Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lucas number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Generating function== Let :<math>\Phi(x) = 2 + x + 3x^2 + 4x^3 + \cdots = \sum_{n = 0}^\infty L_nx^n</math> be the [[generating function]] of the Lucas numbers. By a direct computation, :<math>\begin{align} \Phi(x) &= L_0 + L_1x + \sum_{n = 2}^\infty L_nx^n \\ &= 2 + x + \sum_{n = 2}^\infty (L_{n - 1} + L_{n - 2})x^n \\ &= 2 + x + \sum_{n = 1}^\infty L_nx^{n + 1} + \sum_{n = 0}^\infty L_nx^{n + 2} \\ &= 2 + x + x(\Phi(x) - 2) + x^2 \Phi(x) \end{align}</math> which can be rearranged as :<math>\Phi(x) = \frac{2 - x}{1 - x - x^2}</math> <math>\Phi\!\left(-\frac{1}{x}\right)</math> gives the generating function for the [[#Extension_to_negative_integers|negative indexed Lucas numbers]], <math>\sum_{n = 0}^\infty (-1)^nL_nx^{-n} = \sum_{n = 0}^\infty L_{-n}x^{-n}</math>, and :<math>\Phi\!\left(-\frac{1}{x}\right) = \frac{x + 2x^2}{1 - x - x^2}</math> <math>\Phi(x)</math> satisfies the [[functional equation]] :<math>\Phi(x) - \Phi\!\left(-\frac{1}{x}\right) = 2</math> As the [[Fibonacci number#Generating function|generating function for the Fibonacci numbers]] is given by :<math>s(x) = \frac{x}{1 - x - x^2}</math> we have :<math>s(x) + \Phi(x) = \frac{2}{1 - x - x^2}</math> which [[mathematical proof|proves]] that :<math>F_n + L_n = 2F_{n+1},</math> and :<math>5s(x) + \Phi(x) = \frac2x\Phi(-\frac1x) = 2\frac{1}{1 - x - x^2} + 4\frac{x}{1 - x - x^2}</math> proves that :<math>5F_n + L_n = 2L_{n+1}</math> The [[partial fraction decomposition]] is given by :<math>\Phi(x) = \frac{1}{1 - \phi x} + \frac{1}{1 - \psi x}</math> where <math>\phi = \frac{1 + \sqrt{5}}{2}</math> is the golden ratio and <math>\psi = \frac{1 - \sqrt{5}}{2}</math> is its [[conjugate (square roots)|conjugate]]. This can be used to prove the generating function, as :<math>\sum_{n = 0}^\infty L_nx^n = \sum_{n = 0}^\infty (\phi^n + \psi^n)x^n = \sum_{n = 0}^\infty \phi^nx^n + \sum_{n = 0}^\infty \psi^nx^n = \frac{1}{1 - \phi x} + \frac{1}{1 - \psi x} = \Phi(x)</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)