Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lyapunov stability
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition for discrete-time systems== The definition for [[discrete-time]] systems is almost identical to that for continuous-time systems. The definition below provides this, using an alternate language commonly used in more mathematical texts. Let (''X'', ''d'') be a [[metric space]] and ''f'' : ''X'' β ''X'' a [[continuous function]]. A point ''x'' in ''X'' is said to be '''Lyapunov stable''', if, :<math>\forall \epsilon>0 \ \exists \delta>0 \ \forall y\in X \ \left [d(x,y)<\delta \Rightarrow \forall n \in \mathbf{N} \ d\left (f^n(x),f^n(y) \right )<\epsilon \right ].</math> We say that ''x'' is '''asymptotically stable''' if it belongs to the interior of its [[stable manifold|stable set]], ''i.e.'' if, :<math> \exists \delta>0 \left [ d(x,y)<\delta \Rightarrow \lim_{n\to\infty} d \left(f^n(x),f^n(y) \right)=0\right ].</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)