Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mapping class group
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Torus === In the [[homotopy category]] :<math> \operatorname{MCG}(\mathbf{T}^n) \simeq \operatorname{GL}(n,\Z). </math> This is because the [[Torus#n-dimensional torus|n-dimensional torus]] <math>\mathbf{T}^n = (S^1)^n</math> is an [[Eilenberg–MacLane space]]. For other categories if <math>n\ge 5</math>,<ref>{{cite book |first=A.E. |last=Hatcher |chapter=Concordance spaces, higher simple-homotopy theory, and applications |chapter-url={{GBurl|6hsDCAAAQBAJ|p=3}} |title=Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1 |series=Proceedings of Symposia in Pure Mathematics |publisher= |location= |date=1978 |volume=32 |issue=1 |isbn=978-0-8218-9320-3 |pages=3–21 |doi=10.1090/pspum/032.1/520490 |mr=0520490}}</ref> one has the following split-exact sequences: In the [[category of topological spaces]] :<math>0\to \Z_2^\infty\to \operatorname{MCG}(\mathbf{T}^n) \to \operatorname{GL}(n,\Z)\to 0</math> In the [[Piecewise linear manifold|PL-category]] :<math>0\to \Z_2^\infty\oplus\binom n2\Z_2\to \operatorname{MCG}(\mathbf{T}^n)\to \operatorname{GL}(n,\Z)\to 0</math> (⊕ representing [[direct sum]]). In the [[Smooth manifold|smooth category]] :<math>0\to \Z_2^\infty\oplus\binom n2\Z_2\oplus\sum_{i=0}^n\binom n i\Gamma_{i+1}\to \operatorname{MCG}(\mathbf{T}^n)\to \operatorname{GL}(n,\Z)\to 0</math> where <math>\Gamma_i</math> are the Kervaire–Milnor finite abelian groups of [[homotopy sphere]]s and <math>\Z_2</math> is the group of order 2.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)