Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Material derivative
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Orthogonal coordinates== It may be shown that, in [[orthogonal coordinates]], the {{math|''j''}}-th component of the convection term of the material derivative of a [[vector field]] <math>\mathbf{A}</math> is given by<ref>{{cite web | url = http://mathworld.wolfram.com/ConvectiveOperator.html | title = Convective Operator | author = Eric W. Weisstein | author-link = Eric W. Weisstein | publisher = [[MathWorld]] | access-date = 2008-07-22 }}</ref> <math display="block">[\left(\mathbf{u} \cdot \nabla \right)\mathbf{A}]_j = \sum_i \frac{u_i}{h_i} \frac{\partial A_j}{\partial q^i} + \frac{A_i}{h_i h_j}\left(u_j \frac{\partial h_j}{\partial q^i} - u_i \frac{\partial h_i}{\partial q^j}\right), </math> where the {{math|''h''<sub>''i''</sub>}} are related to the [[metric tensor]]s by <math>h_i = \sqrt{g_{ii}}.</math> In the special case of a three-dimensional [[Cartesian coordinate system]] (''x'', ''y'', ''z''), and {{math|'''A'''}} being a 1-tensor (a vector with three components), this is just: <math display="block">(\mathbf{u}\cdot\nabla) \mathbf{A} = \begin{pmatrix} \displaystyle u_x \frac{\partial A_x}{\partial x} + u_y \frac{\partial A_x}{\partial y}+u_z \frac{\partial A_x}{\partial z} \\ \displaystyle u_x \frac{\partial A_y}{\partial x} + u_y \frac{\partial A_y}{\partial y}+u_z \frac{\partial A_y}{\partial z} \\ \displaystyle u_x \frac{\partial A_z}{\partial x} + u_y \frac{\partial A_z}{\partial y}+u_z \frac{\partial A_z}{\partial z} \end{pmatrix} = \frac{\partial (A_x, A_y, A_z)}{\partial (x, y, z)}\mathbf{u} </math> where <math>\frac{\partial(A_x, A_y, A_z)}{\partial(x, y, z)}</math> is a [[Jacobian matrix]]. There is also a [[vector_calculus_identities#Vector-dot-Del_Operator|vector-dot-del identity]] and the material derivative for a vector field <math>\mathbf A</math> can be expressed as: :<math> {\displaystyle (\mathbf {A} \cdot \nabla )\mathbf {A} = {\frac {1}{2}}\nabla |\mathbf {A} |^{2}-\mathbf {A} \times (\nabla \times \mathbf {A} )={\frac {1}{2}}\nabla |\mathbf {A} |^{2}+(\nabla \times \mathbf {A} )\times \mathbf {A} }.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)