Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Matroid
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Closure operators <span class="anchor" id="closure_ops_anchor"></span> === Let <math>M</math> be a matroid on a finite set <math> E</math>, with rank function <math>r</math> as above. The ''closure'' or ''span'' <math> \operatorname{cl}(A) </math> of a subset <math>A</math> of <math>E</math> is the set :<math> \operatorname{cl}(A) = \Bigl\{\ x \in E \mid r(A) = r\bigl( A \cup \{x\} \bigr) \Bigr\}</math>. This defines a [[closure operator]] <math> \operatorname{cl}: \mathcal{P}(E) \mapsto \mathcal{P}(E) </math> where <math>\mathcal{P}</math> denotes the [[power set]], with the following properties: * (C1) For all subsets <math> X </math> of <math> E</math>, <math> X \subseteq \operatorname{cl}(X)</math>. * (C2) For all subsets <math>X</math> of <math> E</math>, <math>\operatorname{cl}(X)= \operatorname{cl}\left( \operatorname{cl}\left( X \right) \right)</math>. * (C3) For all subsets <math>X</math> and <math>Y</math> of <math>E</math> with <math> X\subseteq Y</math>, <math>\operatorname{cl}(X)\subseteq \operatorname{cl}(Y)</math>. * (C4) For all elements <math>a</math> and <math>b</math> from <math>E</math> and all subsets <math>Y</math> of <math>E</math>, if <math> a \in \operatorname{cl}( Y \cup \{b\}) \smallsetminus \operatorname{cl}(Y)</math> then <math> b \in \operatorname{cl}( Y \cup \{a\}) \smallsetminus \operatorname{cl}(Y)</math>. The first three of these properties are the defining properties of a closure operator. The fourth is sometimes called the ''[[Saunders Mac Lane|Mac Lane]]β[[Ernst Steinitz|Steinitz]] exchange property''. These properties may be taken as another definition of matroid: every function <math>\operatorname{cl}: \mathcal{P}(E)\to \mathcal{P}(E)</math> that obeys these properties determines a matroid.<ref name=w7-9/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)