Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Metric tensor
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Length and angle=== Another interpretation of the metric tensor, also considered by Gauss, is that it provides a way in which to compute the length of [[tangent vector]]s to the surface, as well as the angle between two tangent vectors. In contemporary terms, the metric tensor allows one to compute the [[dot product]] of tangent vectors in a manner independent of the parametric description of the surface. Any tangent vector at a point of the parametric surface {{mvar|M}} can be written in the form :<math>\mathbf{p} = p_1\vec{r}_u + p_2\vec{r}_v</math> for suitable real numbers {{math|''p''<sub>1</sub>}} and {{math|''p''<sub>2</sub>}}. If two tangent vectors are given: :<math>\begin{align} \mathbf{a} &= a_1\vec{r}_u + a_2\vec{r}_v \\ \mathbf{b} &= b_1\vec{r}_u + b_2\vec{r}_v \end{align}</math> then using the [[bilinear form|bilinearity]] of the dot product, :<math>\begin{align} \mathbf{a} \cdot \mathbf{b} &= a_1 b_1 \vec{r}_u\cdot\vec{r}_u + a_1b_2 \vec{r}_u\cdot\vec{r}_v + a_2b_1 \vec{r}_v\cdot\vec{r}_u + a_2 b_2 \vec{r}_v\cdot\vec{r}_v \\[8pt] &= a_1 b_1 E + a_1b_2 F + a_2b_1 F + a_2b_2G. \\[8pt] &= \begin{bmatrix} a_1 & a_2 \end{bmatrix} \begin{bmatrix} E & F \\ F & G \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \,. \end{align}</math> This is plainly a function of the four variables {{math|''a''<sub>1</sub>}}, {{math|''b''<sub>1</sub>}}, {{math|''a''<sub>2</sub>}}, and {{math|''b''<sub>2</sub>}}. It is more profitably viewed, however, as a function that takes a pair of arguments {{math|'''a''' {{=}} [''a''<sub>1</sub> ''a''<sub>2</sub>]}} and {{math|'''b''' {{=}} [''b''<sub>1</sub> ''b''<sub>2</sub>]}} which are vectors in the {{mvar|uv}}-plane. That is, put :<math>g(\mathbf{a}, \mathbf{b}) = a_1b_1 E + a_1b_2 F + a_2b_1 F + a_2b_2G \,.</math> This is a [[symmetric function]] in {{math|'''a'''}} and {{math|'''b'''}}, meaning that :<math>g(\mathbf{a}, \mathbf{b}) = g(\mathbf{b}, \mathbf{a})\,.</math> It is also [[bilinear form|bilinear]], meaning that it is [[linear functional|linear]] in each variable {{math|'''a'''}} and {{math|'''b'''}} separately. That is, :<math>\begin{align} g\left(\lambda\mathbf{a} + \mu\mathbf{a}', \mathbf{b}\right) &= \lambda g(\mathbf{a}, \mathbf{b}) + \mu g\left(\mathbf{a}', \mathbf{b}\right),\quad\text{and} \\ g\left(\mathbf{a}, \lambda\mathbf{b} + \mu\mathbf{b}'\right) &= \lambda g(\mathbf{a}, \mathbf{b}) + \mu g\left(\mathbf{a}, \mathbf{b}'\right) \end{align}</math> for any vectors {{math|'''a'''}}, {{math|'''a'''′}}, {{math|'''b'''}}, and {{math|'''b'''′}} in the {{mvar|uv}} plane, and any real numbers {{mvar|μ}} and {{mvar|λ}}. In particular, the length of a tangent vector {{math|'''a'''}} is given by :<math> \left\| \mathbf{a} \right\| = \sqrt{g(\mathbf{a}, \mathbf{a})}</math> and the angle {{mvar|θ}} between two vectors {{math|'''a'''}} and {{math|'''b'''}} is calculated by :<math>\cos(\theta) = \frac{g(\mathbf{a}, \mathbf{b})}{ \left\| \mathbf{a} \right\| \left\| \mathbf{b} \right\| } \,.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)