Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multiply perfect number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Bounds == In [[Big O notation#Little-o notation|little-o notation]], the number of multiply perfect numbers less than ''x'' is <math>o(x^\varepsilon)</math> for all ε > 0.<ref name="HBI105">{{harvnb|Sándor|Mitrinović|Crstici|2006|p=105}}</ref> The number of ''k''-perfect numbers ''n'' for ''n'' ≤ ''x'' is less than <math>cx^{c'\log\log\log x/\log\log x}</math>, where ''c'' and ''c''' are constants independent of ''k''.<ref name="HBI105" /> Under the assumption of the [[Riemann hypothesis]], the following [[inequality (mathematics)|inequality]] is true for all {{nowrap|''k''-perfect}} numbers ''n'', where ''k'' > 3 :<math>\log\log n > k\cdot e^{-\gamma}</math> where <math>\gamma</math> is [[Euler–Mascheroni constant|Euler's gamma constant]]. This can be proven using [[Robin's theorem]]. The [[number of divisors]] τ(''n'') of a {{nowrap|''k''-perfect}} number ''n'' satisfies the inequality<ref>{{cite arXiv |last=Dagal |first=Keneth Adrian P. |eprint=1309.3527 |title=A Lower Bound for τ(n) for k-Multiperfect Number |class=math.NT |date=2013}}</ref> :<math>\tau(n) > e^{k - \gamma}.</math> The [[prime omega function|number of distinct prime factors]] ω(''n'') of ''n'' satisfies<ref name="HBI106">{{harvnb|Sándor|Mitrinović|Crstici|2006|p=106}}</ref> :<math>\omega(n) \ge k^2-1.</math> If the distinct prime factors of ''n'' are <math>p_1, p_2, \ldots, p_r</math>, then:<ref name="HBI106" /> :<math>r \left(\sqrt[r]{3/2} - 1\right) < \sum_{i=1}^{r} \frac{1}{p_i} < r \left(1 - \sqrt[r]{6/k^2}\right), ~~ \text{if }n\text{ is even}</math> :<math>r \left(\sqrt[3r]{k^2} - 1\right) < \sum_{i=1}^{r} \frac{1}{p_i} < r \left(1 - \sqrt[r]{8/(k\pi^2)}\right), ~~ \text{if }n\text{ is odd}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)