Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Nash embedding theorems
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== General and cited references == {{refbegin}} * {{cite book|last1=Burago|first1=Yu. D.|last2=Zalgaller|first2=V. A.|title=Geometric inequalities|others=Translated from the Russian by A. B. Sosinskiĭ|series=Grundlehren der mathematischen Wissenschaften|volume=285|publisher=[[Springer-Verlag]]|location=Berlin|year=1988|isbn=3-540-13615-0|mr=0936419|author-link1=Yuri Burago|author-link2=Victor Zalgaller|doi=10.1007/978-3-662-07441-1}} * {{cite journal|last1=De Lellis|first1=Camillo|last2=Székelyhidi|first2=László Jr.|title=Dissipative continuous Euler flows|journal=[[Inventiones Mathematicae]]|volume=193|year=2013|issue=2|pages=377–407|mr=3090182|author-link1=Camillo De Lellis|doi=10.1007/s00222-012-0429-9| arxiv=1202.1751 | bibcode=2013InMat.193..377D | s2cid=2693636 }} * {{cite book|last1=Eliashberg|first1=Y.|last2=Mishachev|first2=N.|title=Introduction to the h-principle|series=[[Graduate Studies in Mathematics]]|volume=48|publisher=[[American Mathematical Society]]|location=Providence, RI|year=2002|isbn=0-8218-3227-1|mr=1909245|author-link1=Yakov Eliashberg|doi=10.1090/gsm/048}} * {{cite journal|last1=Greene|first1=Robert E.|author1-link= Robert Everist Greene |last2 = Jacobowitz|first2=Howard|title= Analytic isometric embeddings|journal=[[Annals of Mathematics]]|series=Second Series|volume=93|pages=189–204|doi=10.2307/1970760|issue=1|year=1971|jstor=1970760|mr=0283728}} * {{cite book|last1=Gromov|first1=Mikhael|title=Partial differential relations|series=Ergebnisse der Mathematik und ihrer Grenzgebiete (3)|volume=9|publisher=[[Springer-Verlag]]|location=Berlin|year=1986|isbn=3-540-12177-3|mr=0864505|author-link1=Mikhael Gromov (mathematician)|doi=10.1007/978-3-662-02267-2}} * {{cite journal|first=Matthias|last=Günther|title=Zum Einbettungssatz von J. Nash | issue=1|trans-title=On the embedding theorem of J. Nash | language=German | journal=[[Mathematische Nachrichten]]|volume= 144 |year=1989|pages= 165–187|doi=10.1002/mana.19891440113 | mr=1037168|url = https://onlinelibrary.wiley.com/doi/abs/10.1002/mana.19891440113}} * {{cite journal|last1=Isett|first1=Philip|title=A proof of Onsager's conjecture|journal=[[Annals of Mathematics]]|series=Second Series|year=2018|volume=188|issue=3|pages=871–963|mr=3866888|doi=10.4007/annals.2018.188.3.4|s2cid=119267892|url=https://authors.library.caltech.edu/87369/|arxiv=1608.08301|access-date=2022-05-06|archive-date=2022-10-11|archive-url=https://web.archive.org/web/20221011050610/https://authors.library.caltech.edu/87369/|url-status=dead}} * {{cite book|mr=0238225|last1=Kobayashi|first1=Shoshichi|last2=Nomizu|first2=Katsumi|author-link2=Katsumi Nomizu|title=Foundations of differential geometry. Vol II|series=Interscience Tracts in Pure and Applied Mathematics|volume=15|title-link=Foundations of differential geometry|publisher=[[John Wiley & Sons, Inc.]]|location=New York–London|year=1969|others=Reprinted in 1996| issue=2 |isbn=0-471-15732-5|author-link1=Shoshichi Kobayashi}} * {{cite journal|first=Nicolaas H.|last=Kuiper|authorlink=Nicolaas Kuiper|title=On {{math|''C''<sup>1</sup>}}-isometric imbeddings. I|journal=[[Indagationes Mathematicae|Indagationes Mathematicae (Proceedings)]]|volume=58|year=1955a|pages=545–556|mr=0075640|doi=10.1016/S1385-7258(55)50075-8}} * {{cite journal|first=Nicolaas H.|last=Kuiper|authorlink=Nicolaas Kuiper|title=On {{math|''C''<sup>1</sup>}}-isometric imbeddings. II|journal=[[Indagationes Mathematicae|Indagationes Mathematicae (Proceedings)]]|volume=58|year=1955b|pages=683–689|mr=0075640|doi=10.1016/S1385-7258(55)50093-X}} *{{cite journal|last1=Müller|first1=S.|last2=Šverák|first2=V.|title=Convex integration for Lipschitz mappings and counterexamples to regularity|journal=[[Annals of Mathematics]]|series=Second Series|volume=157|year=2003|issue=3|pages=715–742|mr=1983780|author-link1=Stefan Müller (mathematician)|author-link2=Vladimir Šverák|doi=10.4007/annals.2003.157.715| s2cid=55855605 |doi-access=free|arxiv=math/0402287}} * {{cite journal|first=John|last=Nash|authorlink=John Forbes Nash, Jr.|title={{math|''C''<sup>1</sup>}} isometric imbeddings|journal=[[Annals of Mathematics]]|series=Second Series|volume=60|year=1954|pages=383–396|doi=10.2307/1969840|issue=3|jstor=1969840|mr=0065993}} * {{wikicite|ref={{sfnRef|Nash|1956}}|reference={{cite journal|first=John|last=Nash|authorlink=John Forbes Nash, Jr.|title=The imbedding problem for Riemannian manifolds|journal=[[Annals of Mathematics]]|series=Second Series|volume=63|year=1956|pages=20–63|doi=10.2307/1969989|issue=1|mr=0075639|jstor=1969989|ref=none}} {{erratum|https://web.math.princeton.edu/jfnj/texts_and_graphics/Main.Content/Erratum.txt|checked=yes}}}} * {{cite journal|first=J.|last=Nash|title=Analyticity of the solutions of implicit function problem with analytic data|authorlink=John Forbes Nash, Jr.|journal=[[Annals of Mathematics]]|series=Second Series|volume=84|year=1966|pages=345–355|doi=10.2307/1970448|issue=3|jstor=1970448|mr=0205266}} * {{cite book|first=Michael E.|last=Taylor|author-link=Michael E. Taylor|title=Partial differential equations III. Nonlinear equations|mr=2744149 |edition = Second edition of 1996 original|series=Applied Mathematical Sciences|volume= 117|publisher= [[Springer Publishing|Springer]]|location=New York|year= 2011|isbn=978-1-4419-7048-0|doi=10.1007/978-1-4419-7049-7}} {{refend}} {{Riemannian geometry}} {{Manifolds}} [[Category:Riemannian geometry]] [[Category:Riemannian manifolds]] [[Category:Theorems in Riemannian geometry]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)