Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Newton's cradle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====When the simple solution applies==== For the simple solution to precisely predict the action, no pair in the midst of colliding may touch the third ball, because the presence of the third ball effectively makes the struck ball appear more massive. Applying the two conservation equations to solve the final velocities of three or more balls in a single collision results in many possible solutions, so these two principles are not enough to determine resulting action. Even when there is a small initial separation, a third ball may become involved in the collision if the initial separation is not large enough. When this occurs, the complete solution method described below must be used. Small steel balls work well because they remain efficiently elastic with little heat loss under strong strikes and do not compress much (up to about 30 ΞΌm in a small Newton's cradle). The small, stiff compressions mean they occur rapidly, less than 200 microseconds, so steel balls are more likely to complete a collision before touching a nearby third ball. Softer elastic balls require a larger separation to maximize the effect from pair-wise collisions. [[File:newton_cradle_wave_propagation_3_balls.svg|thumb|Transfer of momentum in a Newton's cradle without balls touching when three balls are dropped [[:File:newton_cradle_wave_propagation_2_balls.svg|(2 balls)]]]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)