Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Optical flow
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Learning-Based Models=== Instead of seeking to model optical flow directly, one can train a [[machine learning]] system to estimate optical flow. Since 2015, when FlowNet<ref>{{Cite conference |last1=Dosovitskiy |first1=Alexey |last2=Fischer |first2=Philipp |last3=Ilg |first3=Eddy |last4=Hausser |first4=Philip |last5=Hazirbas |first5=Caner |last6=Golkov |first6=Vladimir |last7=Smagt |first7=Patrick van der |last8=Cremers |first8=Daniel |last9=Brox |first9=Thomas |date=2015 |title=FlowNet: Learning Optical Flow with Convolutional Networks |url=https://ieeexplore.ieee.org/document/7410673 |publisher=IEEE |pages=2758β2766 |doi=10.1109/ICCV.2015.316 |isbn=978-1-4673-8391-2 | conference=2015 IEEE International Conference on Computer Vision (ICCV)}}</ref> was proposed, learning based models have been applied to optical flow and have gained prominence. Initially, these approaches were based on [[Convolutional neural network|Convolutional Neural Networks]] arranged in a [[U-Net]] architecture. However, with the advent of [[Transformer (deep learning architecture)|transformer architecture]] in 2017, transformer based models have gained prominence.<ref>{{Cite journal |last1=Alfarano |first1=Andrea |last2=Maiano |first2=Luca |last3=Papa |first3=Lorenzo |last4=Amerini |first4=Irene |date=2024 |title=Estimating optical flow: A comprehensive review of the state of the art |url=https://linkinghub.elsevier.com/retrieve/pii/S1077314224002418 |journal=Computer Vision and Image Understanding |language=en |volume=249 |pages=104160 |doi=10.1016/j.cviu.2024.104160}}</ref> Most learning-based approaches to optical flow use [[supervised learning]]. In this case, many frame pairs of video data and their corresponding [[ground truth|ground-truth]] flow fields are used to optimise the parameters of the learning-based model to accurately estimate optical flow. This process often relies on vast training datasets due to the number of parameters involved.<ref>{{cite journal |last1=Tu |first1=Zhigang |last2=Xie |first2=Wei |last3=Zhang |first3=Dejun |last4=Poppe |first4=Ronald |last5=Veltkamp |first5=Remco C. |last6=Li |first6=Baoxin |last7=Yuan |first7=Junsong |title=A survey of variational and CNN-based optical flow techniques |journal=Signal Processing: Image Communication |date=1 March 2019 |volume=72 |pages=9β24 |doi=10.1016/j.image.2018.12.002}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)