Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Order statistic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Order statistics sampled from a uniform distribution ==== In this section we show that the order statistics of the [[uniform distribution (continuous)|uniform distribution]] on the [[unit interval]] have [[marginal distribution]]s belonging to the [[beta distribution]] family. We also give a simple method to derive the joint distribution of any number of order statistics, and finally translate these results to arbitrary continuous distributions using the [[cumulative distribution function|cdf]]. We assume throughout this section that <math>X_1, X_2, \ldots, X_n</math> is a [[random sample]] drawn from a continuous distribution with cdf <math>F_X</math>. Denoting <math>U_i=F_X(X_i)</math> we obtain the corresponding random sample <math>U_1,\ldots,U_n</math> from the standard [[uniform distribution (continuous)|uniform distribution]]. Note that the order statistics also satisfy <math>U_{(i)}=F_X(X_{(i)})</math>. The probability density function of the order statistic <math>U_{(k)}</math> is equal to<ref name="gentle">{{citation|title=Computational Statistics|first=James E.|last=Gentle|publisher=Springer|year=2009|isbn=9780387981444|page=63|url=https://books.google.com/books?id=mQ5KAAAAQBAJ&pg=PA63}}.</ref> :<math>f_{U_{(k)}}(u)={n!\over (k-1)!(n-k)!}u^{k-1}(1-u)^{n-k}</math> that is, the ''k''th order statistic of the uniform distribution is a [[beta distribution|beta-distributed]] random variable.<ref name="gentle"/><ref>{{citation|title=Kumaraswamy's distribution: A beta-type distribution with some tractability advantages|first=M. C.|last=Jones|journal=Statistical Methodology|volume=6|issue=1|year=2009|pages=70β81|doi=10.1016/j.stamet.2008.04.001|quote=As is well known, the beta distribution is the distribution of the ''m'' βth order statistic from a random sample of size ''n'' from the uniform distribution (on (0,1)).}}</ref> :<math>U_{(k)} \sim \operatorname{Beta}(k,n+1\mathbf{-}k).</math> The proof of these statements is as follows. For <math>U_{(k)}</math> to be between ''u'' and ''u'' + ''du'', it is necessary that exactly ''k'' β 1 elements of the sample are smaller than ''u'', and that at least one is between ''u'' and ''u'' + d''u''. The probability that more than one is in this latter interval is already <math>O(du^2)</math>, so we have to calculate the probability that exactly ''k'' β 1, 1 and ''n'' β ''k'' observations fall in the intervals <math>(0,u)</math>, <math>(u,u+du)</math> and <math>(u+du,1)</math> respectively. This equals (refer to [[multinomial distribution]] for details) :<math>{n!\over (k-1)!(n-k)!}u^{k-1}\cdot du\cdot(1-u-du)^{n-k}</math> and the result follows. The mean of this distribution is ''k'' / (''n'' + 1).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)