Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Osmium tetroxide
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Oxidation of alkenes=== Alkenes add to OsO<sub>4</sub> to give [[alkoxide|diolate]] species that hydrolyze to ''cis''-diols. The net process is called dihydroxylation. This proceeds via a [3 + 2] [[cycloaddition]] reaction between the OsO<sub>4</sub> and alkene to form an intermediate osmate ester that rapidly hydrolyses to yield the [[Diol#Vicinal diols|vicinal diol]]. As the oxygen atoms are added in a concerted step, the resulting stereochemistry is ''[[Cis-trans isomerism|cis]]''. :[[File:Dihydroxylation with OsO4.png|thumb|center|600px|Idealized depiction of the cis-dihydroxylation of alkenes.]] OsO<sub>4</sub> is expensive and highly toxic, making it an unappealing reagent to use in [[stoichiometric]] amounts. However, its reactions are made [[Catalysis|catalytic]] by adding [[reoxidant]]s to reoxidise the Os(VI) by-product back to Os(VIII). Typical reagents include [[hydrogen peroxide|H<sub>2</sub>O<sub>2</sub>]] ([[Milas hydroxylation]]), [[N-Methylmorpholine N-oxide|N-methylmorpholine N-oxide]] ([[Upjohn dihydroxylation]]) and [[potassium ferricyanide|K<sub>3</sub>Fe(CN)<sub>6</sub>]]/water. These reoxidants do not react with the alkenes on their own. Other osmium compounds can be used as catalysts, including osmate(VI) salts ([OsO<sub>2</sub>(OH)<sub>4</sub>)]<sup>2−</sup>, and osmium trichloride hydrate (OsCl<sub>3</sub>·''x''H<sub>2</sub>O). These species oxidise to osmium(VIII) in the presence of such oxidants.<ref>{{ cite journal | title = On the timing of hydrolysis / reoxidation in the osmium-catalyzed asymmetric dihydroxylation of olefins using potassium ferricyanide as the reoxidant |author1=Ogino, Y. |author2=Chen, H. |author3=Kwong, H.-L. |author4=Sharpless, K. B. | journal = [[Tetrahedron Letters]] | year = 1991 | volume = 32 | issue = 32 | pages = 3965–3968 | doi = 10.1016/0040-4039(91)80601-2 }}</ref> Lewis bases such as tertiary [[amine]]s and [[pyridine]]s increase the rate of dihydroxylation. This "ligand-acceleration" arises via the formation of [[adduct]] OsO<sub>4</sub>L, which adds more rapidly to the alkene. If the amine is chiral, then the dihydroxylation can proceed with enantioselectivity (see [[Sharpless asymmetric dihydroxylation]]).<ref name=catalysis>{{ cite journal |author1=Berrisford, D. J. |author2=Bolm, C. |author3=Sharpless, K. B. | title = Ligand-Accelerated Catalysis | year = 1995 | journal = [[Angewandte Chemie International Edition]] | volume = 34 | issue = 10 | pages = 1059–1070 | doi = 10.1002/anie.199510591 }}</ref> OsO<sub>4</sub> does not react with most carbohydrates.<ref name=stain/> The process can be extended to give two [[aldehyde]]s in the [[Lemieux–Johnson oxidation]], which uses [[periodate]] to achieve [[diol cleavage]] and to regenerate the catalytic loading of OsO<sub>4</sub>. This process is equivalent to that of [[ozonolysis]]. :[[File:Lemieux–Johnson oxidation.svg|600px]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)