Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Outer automorphism group
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== In finite groups == For the outer automorphism groups of all finite simple groups see the [[list of finite simple groups]]. Sporadic simple groups and alternating groups (other than the alternating group, {{math|A{{sub|6}}}}; see below) all have outer automorphism groups of order 1 or 2. The outer automorphism group of a finite simple [[group of Lie type]] is an extension of a group of "diagonal automorphisms" (cyclic except for {{math|[[list of finite simple groups#Dn.28q.29 n .3E 3 Chevalley groups.2C orthogonal groups|D{{sub|''n''}}(''q'')]]}}, when it has order 4), a group of "field automorphisms" (always cyclic), and a group of "graph automorphisms" (of order 1 or 2 except for {{math|D{{sub|4}}(''q'')}}, when it is the symmetric group on 3 points). These extensions are not always [[semidirect product]]s, as the case of the alternating group {{math|A{{sub|6}}}} shows; a precise criterion for this to happen was given in 2003.<ref>A. Lucchini, F. Menegazzo, M. Morigi (2003), "[https://projecteuclid.org/download/pdf_1/euclid.ijm/1258488162 On the existence of a complement for a finite simple group in its automorphism group]", ''Illinois J. Math.'' 47, 395β418.</ref> {| class="wikitable" |- ! Group ! Parameter ! {{math|Out(''G'')}} ! {{math|{{abs|Out(''G'')}}}} |- | {{math|[[Infinite cyclic group|Z]]}} | || {{math|[[cyclic group|C{{sub|2}}]]}} | {{math|2}}: the identity and the outer automorphism {{math|''x'' β¦ β''x''}} |- | {{math|[[cyclic group|C{{sub|''n''}}]]}} || {{math|''n'' > 2}} | {{math|[[Multiplicative group of integers modulo n|(β€/''n''β€){{sup|Γ}}]]}} | {{math|[[Euler's totient function|''Ο''(''n'')]] {{=}} }}<math>n\prod_{p|n}\left(1 - \frac{1}{p}\right)</math>; one corresponding to multiplication by an invertible element in the [[Ring (mathematics)|ring]] {{math|β€/''n''β€}}. |- | {{math|[[cyclic group|Z{{sub|''p''}}{{sup|''n''}}]]}} | {{mvar|p}} prime, {{math|''n'' > 1}} | {{math|[[general linear group|GL{{sub|''n''}}(''p'')]]}} | {{math|(''p''{{sup|''n''}} β 1)(''p''{{sup|''n''}} β ''p'' )(''p''{{sup|''n''}} β ''p''{{sup|2}})...(''p''{{sup|''n''}} β ''p''{{sup|''n''β1}})}} |- | {{math|[[symmetric group|S{{sub|''n''}}]]}} | {{math|''n'' β 6}} || {{math|[[Trivial group|C{{sub|1}}]]}} | {{math|1}} |- | {{math|[[symmetric group|S{{sub|6}}]]}} | || {{math|C{{sub|2}}}} (see below) | {{math|2}} |- | {{math|[[alternating group|A{{sub|''n''}}]]}} | {{math|''n'' β 6}} || {{math|C{{sub|2}}}} | {{math|2}} |- | {{math|[[alternating group|A{{sub|6}}]]}} | | {{math|[[Klein four-group|C{{sub|2}} Γ C{{sub|2}}]]}} (see below) | {{math|4}} |- | {{math|[[projective special linear group|PSL{{sub|2}}(''p'')]]}} | {{math|''p'' > 3}} prime || {{math|C{{sub|2}}}} | {{math|2}} |- | {{math|[[projective special linear group|PSL{{sub|2}}(2{{sup|''n''}})]]}} | {{math|''n'' > 1}} || {{math|C{{sub|''n''}}}} | {{mvar|n}} |- | {{math|[[projective special linear group|PSL{{sub|3}}(4)]] {{=}} [[Mathieu group|M{{sub|21}}]]}} | || {{math|[[dihedral group of order 6|Dih{{sub|6}}]]}} | {{math|12}} |- | {{math|[[Mathieu group|M{{sub|''n''}}]]}} | {{math|''n'' β {11, 23, 24} }} || {{math|C{{sub|1}}}} | {{math|1}} |- | {{math|[[Mathieu group|M{{sub|''n''}}]]}} | {{math|''n'' β {12, 22} }} || {{math|C{{sub|2}}}} | {{math|2}} |- | {{math|[[Conway group|Co{{sub|''n''}}]]}} | {{math|''n'' β {1, 2, 3} }} || {{math|C{{sub|1}}}} | {{math|1}} |}{{Citation needed|date=February 2007}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)