Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Peer-to-peer
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Structured networks==== [[File:Structured (DHT) peer-to-peer network diagram.png|thumb|right|300px|Overlay network diagram for a '''structured P2P network''', using a [[distributed hash table]] (DHT) to identify and locate nodes/resources]] In ''structured peer-to-peer networks'' the overlay is organized into a specific topology, and the protocol ensures that any node can efficiently<ref>{{Cite web |last1=Dhara |first1=Krishna |last2=Kolberg |first2=Mario |date=January 2010 |title=Overview of Structured Peer-to-Peer Overlay Algorithms |url=https://www.researchgate.net/publication/226809025 }}</ref> search the network for a file/resource, even if the resource is extremely rare.<ref name=":0" /> The most common type of structured P2P networks implement a [[distributed hash table]] (DHT),<ref name="CP2P" /><ref>R. Ranjan, A. Harwood, and R. Buyya, "Peer-to-peer based resource discovery in global grids: a tutorial," ''IEEE Commun. Surv.'', vol. 10, no. 2. and P. Trunfio, "Peer-to-Peer resource discovery in Grids: Models and systems," ''Future Generation Computer Systems'' archive, vol. 23, no. 7, Aug. 2007.</ref> in which a variant of [[consistent hashing]] is used to assign ownership of each file to a particular peer.<ref>{{cite book |last1=Kelaskar |first1=M. |last2=Matossian |first2=V. |last3=Mehra |first3=P. |last4=Paul |first4=D. |last5=Parashar |first5=M. |year=2002 |url=http://portal.acm.org/citation.cfm?id=873218 |title=A Study of Discovery Mechanisms for Peer-to-Peer Application |pages=444β |publisher=IEEE Computer Society |isbn=9780769515823 }}</ref><ref name="P2P_API">{{cite book |last1=Dabek |first1=Frank |first2=Ben |last2=Zhao |first3=Peter |last3=Druschel |first4=John |last4=Kubiatowicz |first5=Ion |last5=Stoica |title=Peer-to-Peer Systems II |chapter=Towards a Common API for Structured Peer-to-Peer Overlays |year=2003 |volume=2735 |series=Lecture Notes in Computer Science |pages=33β44 |doi=10.1007/978-3-540-45172-3_3 |isbn=978-3-540-40724-9 |citeseerx=10.1.1.12.5548 }}</ref> This enables peers to search for resources on the network using a [[hash table]]: that is, (''key'', ''value'') pairs are stored in the DHT, and any participating node can efficiently retrieve the value associated with a given key.<ref>Moni Naor and Udi Wieder. [http://www.wisdom.weizmann.ac.il/~naor/PAPERS/dh.pdf Novel Architectures for P2P Applications: the Continuous-Discrete Approach] {{Webarchive|url=https://web.archive.org/web/20191209032152/http://www.wisdom.weizmann.ac.il/~naor/PAPERS/dh.pdf |date=2019-12-09 }}. Proc. SPAA, 2003.</ref><ref>Gurmeet Singh Manku. [http://www-db.stanford.edu/~manku/phd/index.html Dipsea: A Modular Distributed Hash Table] {{webarchive|url=https://web.archive.org/web/20040910154927/http://www-db.stanford.edu/~manku/phd/index.html |date=2004-09-10 }}. Ph. D. Thesis (Stanford University), August 2004.</ref> [[File:DHT en.svg|thumb|left|250px|Distributed hash tables]] However, in order to route traffic efficiently through the network, nodes in a structured overlay must maintain lists of neighbors<ref>{{Cite web|url=https://sites.cs.ucsb.edu/~ravenben/publications/pdf/impact-iptps.pdf|title=Impact of Neighbor Selection on Performance and Resilience of Structured P2P Networks|author=Byung-Gon Chun, Ben Y. Zhao, John D. Kubiatowicz|date=2005-02-24|access-date=2019-08-24}}</ref> that satisfy specific criteria. This makes them less robust in networks with a high rate of ''churn'' (i.e. with large numbers of nodes frequently joining and leaving the network).<ref name="lv-2002" /><ref>{{cite book|last=Li |first=Deng |title=An Efficient, Scalable, and Robust P2P Overlay for Autonomic Communication |editor-last=Vasilakos |editor-first=A.V. |publisher=Springer |year=2009 |isbn=978-0-387-09752-7 |page=329 |url=https://books.google.com/books?id=c02mTcXW_U4C&pg=PA329 |display-authors=etal|display-editors=etal}}</ref> More recent evaluation of P2P resource discovery solutions under real workloads have pointed out several issues in DHT-based solutions such as high cost of advertising/discovering resources and static and dynamic load imbalance.<ref>{{cite journal |last1=Bandara |first1=H. M. N. Dilum |first2=Anura P. |last2=Jayasumana |title=Evaluation of P2P Resource Discovery Architectures Using Real-Life Multi-Attribute Resource and Query Characteristics |journal=IEEE Consumer Communications and Networking Conf. (CCNC '12) |date=January 2012}}</ref> Notable distributed networks that use DHTs include [[Tixati]], an alternative to [[BitTorrent (protocol)|BitTorrent's]] distributed tracker, the [[Kad network]], the [[Storm botnet]], and the [[YaCy]]. Some prominent research projects include the [[Chord project]], [[Kademlia]], [[PAST storage utility]], [[P-Grid]], a self-organized and emerging overlay network, and [[CoopNet content distribution system]].<ref>{{cite book | last1=Korzun | first1=Dmitry| last2=Gurtov| first2 = Andrei| title= Structured P2P Systems: Fundamentals of Hierarchical Organization, Routing, Scaling, and Security|publisher=Springer | isbn = 978-1-4614-5482-3 |date= November 2012 | url=https://www.springer.com/gp/book/9781461454823}}</ref> DHT-based networks have also been widely utilized for accomplishing efficient resource discovery<ref>{{cite web |last1=Ranjan |first1=Rajiv |last2=Harwood |first2=Aaron |last3=Buyya |first3=Rajkumar |date=1 December 2006 |url=http://www.cs.mu.oz.au/%7Erranjan/pgrid.pdf |title=A Study on Peer-to-Peer Based Discovery of Grid Resource Information |access-date=25 August 2008 |archive-date=14 May 2011 |archive-url=https://web.archive.org/web/20110514055004/http://www.cs.mu.oz.au/%7Erranjan/pgrid.pdf |url-status=dead }}</ref><ref>{{cite web |url=http://gridbus.org/papers/DecentralisedDiscoveryGridFed-eScience2007.pdf |first1=Rajiv |last1=Ranjan |first2=Lipo |last2=Chan |first3=Aaron |last3=Harwood |first4=Shanika |last4=Karunasekera |first5=Rajkumar |last5=Buyya |title=Decentralised Resource Discovery Service for Large Scale Federated Grids |url-status=dead |archive-url=https://web.archive.org/web/20080910170417/http://gridbus.org/papers/DecentralisedDiscoveryGridFed-eScience2007.pdf |archive-date=2008-09-10 }}</ref> for [[grid computing]] systems, as it aids in resource management and scheduling of applications.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)