Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Picard–Lindelöf theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Detailed proof == Let <math>L</math> be the Lipschitz constant of <math>(t, y) \mapsto f(t,y)</math> with respect to <math>y.</math> The function <math>f</math> is continuous as a function of <math>(t,y)</math>. In particular, since <math>t \mapsto f(t,y)</math> is a continuous function of <math>t</math>, we have that for any point <math>(t_0, y_0)</math> and <math>\epsilon>0</math> there exist <math>\delta>0</math> such that <math>|f(t,y_0)-f(t_0,y_0)| <\epsilon / 2</math> when <math>|t - t_0| < \delta</math>. We have <math display="block"> |f(t,y)-f(t_0,y_0)|\leq |f(t,y)-f(t,y_0)|+|f(t,y_0)-f(t_0,y_0)|<\epsilon, </math> provided <math>|t-t_0|<\delta</math> and <math>|y-y_0|<\epsilon /2L</math>, which shows that <math>f</math> is continuous at <math>(t_0,y_0)</math>. Let <math>a := 1/2L</math> and take any <math>b > 0</math> such that <math display="block"> C_{a,b} = I_a(t_0) \times B_b(y_0) </math> is a subset of <math>D,</math> where <math display="block">\begin{align} I_a(t_0) &= [t_0-a,t_0+a] \\ B_b(y_0) &= [y_0-b,y_0+b]. \end{align}</math> Such a set exists because <math>(t_0, y_0)</math> is in the interior of <math>D,</math> by assumption. <!--<math>C_{a,b}</math> is a compact rectangular set where  {{math|''f''}}  is defined. --> Let :<math>M = \sup_{(t,y) \in C_{a,b}}\|f(t,y)\|,</math> which is the [[supremum]] of (the [[absolute value]]s of) the slopes of the function. The function <math>f</math> attains a maximum on <math>C_{a,b}</math> because <math>f</math> is continuous and <math>C_{a,b}</math> is compact. For a later step in the proof, we need that <math>a < b / M,</math> so if <math>a \geq b / M,</math> then change <math>a</math> to <math>a :=\tfrac{1}{2}\min\{1 / L,\ b / M\},</math> and update <math>I_{a}(t_0),</math> <math>B_{b}(y_0),</math> <math>C_{a,b},</math> and <math>M</math> accordingly (this update will be needed at most once since <math>M</math> cannot increase as a result of restricting <math>C_{a,b}</math>). Consider <math>\mathcal{C}(I_{a}(t_0),B_b(y_0))</math>, the [[function space]] of continuous functions <math>I_{a}(t_0)\to B_b(y_0).</math> We will proceed by applying the [[Banach fixed-point theorem]] using the [[metric (mathematics)|metric]] on <math>\mathcal{C}(I_{a}(t_0),B_b(y_0))</math> induced by the [[uniform norm]]. Namely, for each continuous function <math>\varphi : I_{a}(t_0) \to B_b(y_0),</math> the norm of <math>\varphi</math> is <math display="block">\| \varphi \|_\infty = \sup_{t \in I_a} \| \varphi(t)\|.</math> <!--\varphi should be a function of t and x, but it is only written as a function of t!--> The ''Picard operator'' <math display="block">\Gamma:\mathcal{C}\big(I_{a}(t_0),B_b(y_0)\big) \to \mathcal{C}\big(I_{a}(t_0),B_b(y_0)\big)</math> is defined for each <math>\varphi \in \mathcal{C}(I_{a}(t_0),B_b(y_0))</math> by <math>\Gamma \varphi \in \mathcal{C}(I_{a}(t_0),B_b(y_0))</math> given by <math display="block">\Gamma \varphi(t) = y_0 + \int_{t_0}^{t} f(s,\varphi(s)) \, ds \quad \forall t \in I_a(t_0).</math> To apply the Banach fixed-point theorem, we must show that <math>\Gamma</math> maps a complete non-empty [[metric space]] ''X'' into itself and also is a [[contraction mapping]]. We first show that <math>\Gamma</math> takes <math>B_b(y_0)</math> into itself in the space of continuous functions with the uniform norm. <!-- The statement "<math>\Gamma</math> takes <math>\overline{B_b(y_0)}</math> into itself" is not technically correct, since \Gamma acts on functions *and* those functions should have \mathcal{C}(I_{a}(t_0),B_b(y_0)) as their domain.--> Here, <math>B_b(y_0)</math> is a closed ball in the space of continuous (and [[bounded function|bounded]]) functions "centered" at the constant function <math>y_0</math>. Hence we need to show that <math display="block>\| \varphi -y_0 \|_\infty \le b</math> implies <math display="block>\left\| \Gamma\varphi(t)-y_0 \right\| = \left\|\int_{t_0}^t f(s,\varphi(s))\, ds \right\| \leq \int_{t_0}^{t'} \left\|f(s,\varphi(s))\right\| ds \leq \int_{t_0}^{t'} M\, ds = M \left|t'-t_0 \right| \leq M a \leq b</math> where <math>t'</math> is some number in <math>[t_0-a, t_0 +a]</math> where the maximum is achieved. The last inequality in the chain is true since <math>a < b / M.</math> <!--To-do: This preceding paragraph mixes a statement of what we "want to show" with the actual thing we are showing.--> Now let us prove that <math>\Gamma</math> is a contraction mapping as required to apply the [[Banach fixed-point theorem]]. In particular, we want to show that there exists <math>0 \leq q < 1,</math> such that <math display="block"> \left \| \Gamma \varphi_1 - \Gamma \varphi_2 \right\|_\infty \le q \left\| \varphi_1 - \varphi_2 \right\|_\infty</math> for all <math>\varphi_1,\varphi_2\in\mathcal{C}(I_{a}(t_0),B_b(y_0)).</math> Let <math>q = aL</math> and take any <math>\varphi_1,\varphi_2\in\mathcal{C}(I_{a}(t_0),B_b(y_0)).</math> Take <math>t</math> such that :<math>\| \Gamma \varphi_1 - \Gamma \varphi_2 \|_\infty = \left\| \left(\Gamma\varphi_1 - \Gamma\varphi_2 \right)(t) \right\|.</math> <!-- To-do: Explain why such a t exists --> Then, using the definition of <math>\Gamma</math>, :<math>\begin{align} \left\|\left(\Gamma\varphi_1 - \Gamma\varphi_2 \right)(t) \right\| &= \left\|\int_{t_0}^t \left( f(s,\varphi_1(s))-f(s,\varphi_2(s)) \right)ds \right\|\\ &\leq \int_{t_0}^t \left\|f \left(s,\varphi_1(s)\right)-f\left(s,\varphi_2(s) \right) \right\| ds \\ &\leq L \int_{t_0}^t \left\|\varphi_1(s)-\varphi_2(s) \right\|ds && \text{since } f \text{ is Lipschitz-continuous} \\ &\leq L \int_{t_0}^t \left\|\varphi_1-\varphi_2 \right\|_\infty \,ds \\ &\leq La \left\|\varphi_1-\varphi_2 \right\|_\infty, \end{align}</math> where <math>t - t_0 \leq a,</math> because the domains of <math>\phi_1,\phi_2</math> are both <math>I_a(t_0) \times B_b(y_0).</math> By definition, <math>q = aL,</math> and <math>a < 1 / L,</math> so <math>q < 1.</math> Therefore, <math>\Gamma</math> is a contraction. <!--To-do: This proof should construct a value of q \in [0, 1) such that |\Gamma \phi_1 - \Gamma \phi_2| \leq q |\phi_1 - \phi_2|_\infty for all \phi_1, \phi_2. --> We have established that the Picard's operator is a contraction on the [[Banach space]]s with the metric induced by the uniform norm. This allows us to apply the Banach fixed-point theorem to conclude that the operator has a unique fixed point. In particular, there is a unique function <math display="bl">\varphi\in \mathcal{C}(I_a (t_0), B_b(y_0))</math> such that <math display="block">\Gamma \varphi = \varphi.</math> Thus, <math>\varphi</math> is the unique solution of the initial value problem, valid on the interval <math>I_a.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)