Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Polygamma function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Series representation== The polygamma function has the series representation :<math>\psi^{(m)}(z) = (-1)^{m+1}\, m! \sum_{k=0}^\infty \frac{1}{(z+k)^{m+1}}</math> which holds for integer values of {{math|''m'' > 0}} and any complex {{mvar|z}} not equal to a negative integer. This representation can be written more compactly in terms of the [[Hurwitz zeta function]] as :<math>\psi^{(m)}(z) = (-1)^{m+1}\, m!\, \zeta (m+1,z).</math> This relation can for example be used to compute the special values<ref> {{cite journal|first1=K. S. |last1=Kölbig|year=1996|journal=Journal of Computational and Applied Mathematics |volume=75|number=1|pages=43–46|title=The polygamma function <math>\psi^{(k)}(x)</math> for <math>x=\frac{1}{4}</math> and <math>x=\frac{3}{4}</math>|doi=10.1016/S0377-0427(96)00055-6|doi-access=free}} </ref> :<math> \psi^{(2n-1)}\left(\frac14\right) = \frac{4^{2n-1}}{2n}\left(\pi^{2n}(2^{2n}-1)|B_{2n}|+2(2n)!\beta(2n)\right); </math> :<math> \psi^{(2n-1)}\left(\frac34\right) = \frac{4^{2n-1}}{2n}\left(\pi^{2n}(2^{2n}-1)|B_{2n}|-2(2n)!\beta(2n)\right); </math> :<math> \psi^{(2n)}\left(\frac14\right) = -2^{2n-1}\left(\pi^{2n+1}|E_{2n}|+2(2n)!(2^{2n+1}-1)\zeta(2n+1)\right); </math> :<math> \psi^{(2n)}\left(\frac34\right) = 2^{2n-1}\left(\pi^{2n+1}|E_{2n}|-2(2n)!(2^{2n+1}-1)\zeta(2n+1)\right). </math> Alternately, the Hurwitz zeta can be understood to generalize the polygamma to arbitrary, non-integer order. One more series may be permitted for the polygamma functions. As given by [[Schlömilch]], :<math>\frac{1}{\Gamma(z)} = z e^{\gamma z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right) e^{-\frac{z}{n}}.</math> This is a result of the [[Weierstrass factorization theorem]]. Thus, the gamma function may now be defined as: :<math>\Gamma(z) = \frac{e^{-\gamma z}}{z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right)^{-1} e^\frac{z}{n}.</math> Now, the [[natural logarithm]] of the gamma function is easily representable: :<math>\ln \Gamma(z) = -\gamma z - \ln(z) + \sum_{k=1}^\infty \left( \frac{z}{k} - \ln\left(1 + \frac{z}{k}\right) \right).</math> Finally, we arrive at a summation representation for the polygamma function: :<math>\psi^{(n)}(z) = \frac{\mathrm{d}^{n+1}}{\mathrm{d}z^{n+1}}\ln \Gamma(z) = -\gamma \delta_{n0} - \frac{(-1)^n n!}{z^{n+1}} + \sum_{k=1}^{\infty} \left(\frac{1}{k} \delta_{n0} - \frac{(-1)^n n!}{(k+z)^{n+1}}\right)</math> Where {{math|''δ''<sub>''n''0</sub>}} is the [[Kronecker delta]]. Also the [[Lerch transcendent]] :<math>\Phi(-1, m+1, z) = \sum_{k=0}^\infty \frac{(-1)^k}{(z+k)^{m+1}}</math> can be denoted in terms of polygamma function :<math>\Phi(-1, m+1, z)=\frac1{(-2)^{m+1}m!}\left(\psi^{(m)}\left(\frac{z}{2}\right)-\psi^{(m)}\left(\frac{z+1}{2}\right)\right)</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)