Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Positive operator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Application to physics: quantum states == {{Main|Quantum state|Density operator}} The definition of a [[quantum system]] includes a complex [[separable Hilbert space]] <math>H_\mathbb{C}</math> and a set <math>\cal S</math> of positive [[trace-class]] [[density operator|operators]] <math>\rho</math> on <math>H_\mathbb{C}</math> for which <math>\mathop{\text{Trace}}\rho = 1.</math> The [[Set (mathematics)|set]] <math>\cal S</math> is ''the set of states''. Every <math>\rho \in {\cal S}</math> is called a ''state'' or a ''density operator''. For <math>\psi \in H_\mathbb{C},</math> where <math>\|\psi\| = 1,</math> the operator <math>P_\psi</math> of projection onto the [[Linear span|span]] of <math>\psi</math> is called a ''[[pure state]]''. (Since each pure state is identifiable with a [[unit vector]] <math>\psi \in H_\mathbb{C},</math> some sources define pure states to be unit elements from <math>H_\mathbb{C}).</math> States that are not pure are called ''[[Mixed state (physics)|mixed]]''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)