Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Projective plane
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===A finite example=== This example has just thirteen points and thirteen lines. We label the points P<sub>1</sub>, ..., P<sub>13</sub> and the lines m<sub>1</sub>, ..., m<sub>13</sub>. The [[incidence relation]] (which points are on which lines) can be given by the following [[incidence matrix]]. The rows are labelled by the points and the columns are labelled by the lines. A 1 in row ''i'' and column ''j'' means that the point P<sub>''i''</sub> is on the line m<sub>''j''</sub>, while a 0 (which we represent here by a blank cell for ease of reading) means that they are not incident. The matrix is in Paige–Wexler normal form. :::{| class="wikitable" style="text-align:center;" |- ! {{diagonal split header|Points|Lines}} ! m<sub>1</sub> ! m<sub>2</sub> !! m<sub>3</sub> !! m<sub>4</sub> ! m<sub>5</sub> !! m<sub>6</sub> !! m<sub>7</sub> ! m<sub>8</sub> !! m<sub>9</sub> !! m<sub>10</sub> ! m<sub>11</sub>!! m<sub>12</sub>!! m<sub>13</sub> |- style="border-bottom:2px solid #999;" ! P<sub>1</sub> | bgcolor="#9cf"|1 || bgcolor="#9cf"|1 || bgcolor="#9cf"|1 || bgcolor="#9cf"|1 || || || || || || || || || |- ! P<sub>2</sub> | bgcolor="#9cf"|1 || || || || bgcolor="#9cf"|1 || bgcolor="#9cf"|1 || bgcolor="#9cf"|1 || || || || || || |- ! P<sub>3</sub> | bgcolor="#9cf"|1 || || || || || || || bgcolor="#9cf"|1 || bgcolor="#9cf"|1 || bgcolor="#9cf"|1 || || || |- style="border-bottom:2px solid #999;" ! P<sub>4</sub> | bgcolor="#9cf"|1 || || || || || || || || || || bgcolor="#9cf"|1 || bgcolor="#9cf"|1 || bgcolor="#9cf"|1 |- ! P<sub>5</sub> | || bgcolor="#9cf"|1 || || || bgcolor="#9cf"|1 || || || bgcolor="#9cf"|1 || || || bgcolor="#9cf"|1 || || |- ! P<sub>6</sub> | || bgcolor="#9cf"|1 || || || || bgcolor="#9cf"|1 || || || bgcolor="#9cf"|1 || || || bgcolor="#9cf"|1 || |- style="border-bottom:2px solid #999;" ! P<sub>7</sub> | || bgcolor="#9cf"|1 || || || || || bgcolor="#9cf"|1 || || || bgcolor="#9cf"|1 || || || bgcolor="#9cf"|1 |- ! P<sub>8</sub> | || || bgcolor="#9cf"|1 || || bgcolor="#9cf"|1 || || || || bgcolor="#9cf"|1 || || || || bgcolor="#9cf"|1 |- ! P<sub>9</sub> | || || bgcolor="#9cf"|1 || || || bgcolor="#9cf"|1 || || || || bgcolor="#9cf"|1 || bgcolor="#9cf"|1 || || |- style="border-bottom:2px solid #999;" ! P<sub>10</sub> | || || bgcolor="#9cf"|1 || || || || bgcolor="#9cf"|1 || bgcolor="#9cf"|1 || || || || bgcolor="#9cf"|1 || |- ! P<sub>11</sub> | || || || bgcolor="#9cf"|1 || bgcolor="#9cf"|1 || || || || || bgcolor="#9cf"|1 || || bgcolor="#9cf"|1 || |- ! P<sub>12</sub> | || || || bgcolor="#9cf"|1 || || bgcolor="#9cf"|1 || || bgcolor="#9cf"|1 || || || || || bgcolor="#9cf"|1 |- ! P<sub>13</sub> | || || || bgcolor="#9cf"|1 || || || bgcolor="#9cf"|1 || || bgcolor="#9cf"|1 || || bgcolor="#9cf"|1 || || |} To verify the conditions that make this a projective plane, observe that every two rows have exactly one common column in which 1s appear (every pair of distinct points are on exactly one common line) and that every two columns have exactly one common row in which 1s appear (every pair of distinct lines meet at exactly one point). Among many possibilities, the points P<sub>1</sub>, P<sub>4</sub>, P<sub>5</sub>, and P<sub>8</sub>, for example, will satisfy the third condition. This example is known as the '''projective plane of order three'''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)