Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Public-key cryptography
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Algorithms === All public key schemes are in theory susceptible to a "[[brute-force attack|brute-force key search attack]]".<ref>{{cite book|last1=Paar|first1=Christof|first2=Jan|last2=Pelzl|first3=Bart|last3=Preneel|url=http://www.crypto-textbook.com|title=Understanding Cryptography: A Textbook for Students and Practitioners|publisher=Springer|year=2010|isbn=978-3-642-04100-6}}</ref> However, such an attack is impractical if the amount of computation needed to succeed – termed the "work factor" by [[Claude Shannon]] – is out of reach of all potential attackers. In many cases, the work factor can be increased by simply choosing a longer key. But other algorithms may inherently have much lower work factors, making resistance to a brute-force attack (e.g., from longer keys) irrelevant. Some special and specific algorithms have been developed to aid in attacking some public key encryption algorithms; both [[RSA (algorithm)|RSA]] and [[ElGamal encryption]] have known attacks that are much faster than the brute-force approach.{{cn|date=June 2024}} None of these are sufficiently improved to be actually practical, however. Major weaknesses have been found for several formerly promising asymmetric key algorithms. The [[Merkle–Hellman knapsack cryptosystem|"knapsack packing" algorithm]] was found to be insecure after the development of a new attack.<ref>{{Cite journal|last1=Shamir|first1=Adi|date=November 1982|title=A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem|url=https://ieeexplore.ieee.org/document/4568386|journal=23rd Annual Symposium on Foundations of Computer Science (SFCS 1982)|pages=145–152|doi=10.1109/SFCS.1982.5}}</ref> As with all cryptographic functions, public-key implementations may be vulnerable to [[side-channel attack]]s that exploit information leakage to simplify the search for a secret key. These are often independent of the algorithm being used. Research is underway to both discover, and to protect against, new attacks.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)