Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Pushforward (differential)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Examples === ==== Pushforward from multiplication on Lie groups ==== Given a [[Lie group]] <math>G</math>, we can use the multiplication map <math>m(-,-) : G\times G \to G</math> to get left multiplication <math>L_g = m(g,-)</math> and right multiplication <math>R_g = m(-,g)</math> maps <math>G \to G</math>. These maps can be used to construct left or right invariant vector fields on <math>G</math> from its tangent space at the origin <math>\mathfrak{g} = T_e G</math> (which is its associated [[Lie algebra]]). For example, given <math>X \in \mathfrak{g}</math> we get an associated vector field <math>\mathfrak{X}</math> on <math>G</math> defined by <math display="block">\mathfrak{X}_g = (L_g)_*(X) \in T_g G</math> for every <math>g \in G</math>. This can be readily computed using the curves definition of pushforward maps. If we have a curve <math display="block">\gamma: (-1,1) \to G</math> where <math display="block">\gamma(0) = e \, , \quad \gamma'(0) = X</math> we get <math display="block">\begin{align} (L_g)_*(X) &= (L_g\circ \gamma)'(0) \\ &= (g\cdot \gamma(t))'(0) \\ &= \frac{dg}{dt}\gamma(0) + g\cdot \frac{d\gamma}{dt} (0) \\ &= g \cdot \gamma'(0) \end{align}</math> since <math>L_g</math> is constant with respect to <math>\gamma</math>. This implies we can interpret the tangent spaces <math>T_g G</math> as <math>T_g G = g\cdot T_e G = g\cdot \mathfrak{g}</math>. ==== Pushforward for some Lie groups ==== For example, if <math>G</math> is the Heisenberg group given by matrices <math display="block">H = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} : a,b,c \in \mathbb{R} \right\}</math> it has Lie algebra given by the set of matrices <math display="block">\mathfrak{h} = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix} : a,b,c \in \mathbb{R} \right\}</math> since we can find a path <math>\gamma:(-1,1) \to H</math> giving any real number in one of the upper matrix entries with <math>i < j</math> (i-th row and j-th column). Then, for <math display="block">g = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}</math> we have <math display="block">T_gH = g\cdot \mathfrak{h} = \left\{ \begin{bmatrix} 0 & a & b + 2c \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix} : a,b,c \in \mathbb{R} \right\}</math> which is equal to the original set of matrices. This is not always the case, for example, in the group <math display="block">G = \left\{ \begin{bmatrix} a & b \\ 0 & 1/a \end{bmatrix} : a,b \in \mathbb{R}, a \neq 0 \right\}</math> we have its Lie algebra as the set of matrices <math display="block">\mathfrak{g} = \left\{ \begin{bmatrix} a & b \\ 0 & -a \end{bmatrix} : a,b \in \mathbb{R} \right\}</math> hence for some matrix <math display="block">g = \begin{bmatrix} 2 & 3 \\ 0 & 1/2 \end{bmatrix}</math> we have <math display="block">T_gG = \left\{ \begin{bmatrix} 2a & 2b - 3a \\ 0 & -a/2 \end{bmatrix} : a,b\in \mathbb{R} \right\}</math> which is not the same set of matrices.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)