Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quintic function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Other solvable quintics=== There are infinitely many solvable quintics in Bring–Jerrard form which have been parameterized in a preceding section. Up to the scaling of the variable, there are exactly five solvable quintics of the shape <math>x^5+ax^2+b</math>, which are<ref>{{cite web |first=Noam |last=Elkies |title=Trinomials {{nobr|a x{{sup|n}} + b x + c}} with interesting Galois groups |url=https://www.math.harvard.edu/~elkies/trinomial.html |publisher=[[Harvard University]]}}</ref> (where ''s'' is a scaling factor): :<math>x^5-2s^3x^2-\frac{s^5}{5} </math> :<math> x^5-100s^3x^2-1000s^5</math> :<math>x^5-5s^3x^2-3s^5 </math> :<math>x^5-5s^3x^2+15s^5 </math> :<math> x^5-25s^3x^2-300s^5</math> Paxton Young (1888) gave a number of examples of solvable quintics: :{| <math>x^5+3x^2+2x-1 </math> || |- | <math> x^5-10x^3-20x^2-1505x-7412</math> || |- | <math>x^5+\frac{625}{4}x+3750 </math> || |- | <math>x^5-\frac{22}{5}x^3-\frac{11}{25}x^2+\frac{462}{125}x+\frac{979}{3125} </math> || |- | <math>x^5+20x^3+20x^2+30x+10 </math> || <math>~\qquad ~</math> Root: <math> \sqrt[5]{2}-\sqrt[5]{2}^2+\sqrt[5]{2}^3-\sqrt[5]{2}^4</math> |- |<math>x^5-20x^3+250x-400 </math> || |- | <math>x^5-5x^3+\frac{85}{8}x-\frac{13}{2} </math> || |- |<math> x^5+\frac{20}{17}x+\frac{21}{17}</math> || |- |<math>x^5-\frac{4}{13}x+\frac{29}{65}</math> || |- |<math> x^5+\frac{10}{13}x+\frac{3}{13} </math> || |- | <math> x^5+110(5x^3+60x^2+800x+8320)</math> || |- | <math>x^5-20 x^3 -80x^2 -150x -656</math>|| |- | <math> x^5 -40x^3 +160x^2 +1000x -5888</math> || |- |<math> x^5-50x^3-600x^2-2000x-11200</math> || |- | <math>x^5+110(5x^3 + 20x^2 -360x +800)</math> || |- | <math> x^5 -20x^3 +170x + 208</math> || |} An infinite sequence of solvable quintics may be constructed, whose roots are sums of {{mvar|n}}th [[roots of unity]], with {{nobr|{{math|''n'' {{=}} 10''k'' + 1}}}} being a [[prime number]]: :{| |- | <math>x^5+x^4-4x^3-3x^2+3x+1</math> || || Roots: <math>2\cos\left(\frac{2k\pi}{11}\right)</math> |- | <math> x^5+x^4-12x^3-21x^2+x+5</math> || || Root: <math> \sum_{k=0}^5 e^\frac{2i\pi 6^k }{31}</math> |- | <math>x^5+x^4-16x^3+5x^2+21x-9</math> || || Root: <math>\sum_{k=0}^7 e^\frac{2i\pi 3^k }{41}</math> |- | <math>x^5+x^4-24x^3-17x^2+41x-13</math> || <math>~\qquad ~</math> || {{nowrap|1= Root: <math>\sum_{k=0}^{11} e^\frac{2i\pi (21)^k }{61}</math>}} |- | <math>x^5+x^4 - 28x^3 + 37x^2 + 25x + 1</math> || || {{nowrap|1= Root: <math>\sum_{k=0}^{13} e^\frac{2i\pi (23)^k }{71}</math>}} |} There are also two parameterized families of solvable quintics: The Kondo–Brumer quintic, :<math> x^5 + (a-3)\,x^4 + (-a+b+3)\,x^3 + (a^2-a-1-2b)\,x^2 + b\,x + a = 0 </math> and the family depending on the parameters <math>a, \ell, m</math> :<math> x^5 - 5\,p \left( 2\,x^3 + a\,x^2 + b\,x \right) - p\,c = 0 </math> where ::<math> p = \tfrac{1}{4} \left[\, \ell^2 (4m^2 + a^2) - m^2 \,\right] \;,</math> : ::<math> b = \ell \, ( 4m^2 + a^2 ) - 5p - 2m^2 \;,</math> : ::<math> c = \tfrac{1}{2} \left[\, b(a + 4m) - p(a - 4m) - a^2m \,\right] \;.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)