Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quotient rule
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Proofs== ===Proof from derivative definition and limit properties=== Let <math>h(x) = \frac{f(x)}{g(x)}.</math> Applying the definition of the derivative and properties of limits gives the following proof, with the term <math>f(x) g(x)</math> added and subtracted to allow splitting and factoring in subsequent steps without affecting the value:<math display="block">\begin{align} h'(x) &= \lim_{k\to 0} \frac{h(x+k) - h(x)}{k} \\ &= \lim_{k\to 0} \frac{\frac{f(x+k)}{g(x+k)} - \frac{f(x)}{g(x)}}{k} \\ &= \lim_{k\to 0} \frac{f(x+k)g(x) - f(x)g(x+k)}{k \cdot g(x)g(x+k)} \\ &= \lim_{k\to 0} \frac{f(x+k)g(x) - f(x)g(x+k)}{k} \cdot \lim_{k\to 0}\frac{1}{g(x)g(x+k)} \\ &= \lim_{k\to 0} \left[\frac{f(x+k)g(x) - f(x)g(x) + f(x)g(x) - f(x)g(x+k)}{k} \right] \cdot \frac{1}{[g(x)]^2} \\ &= \left[\lim_{k\to 0} \frac{f(x+k)g(x) - f(x)g(x)}{k} - \lim_{k\to 0}\frac{f(x)g(x+k) - f(x)g(x)}{k} \right] \cdot \frac{1}{[g(x)]^2} \\ &= \left[\lim_{k\to 0} \frac{f(x+k) - f(x)}{k} \cdot g(x) - f(x) \cdot \lim_{k\to 0}\frac{g(x+k) - g(x)}{k} \right] \cdot \frac{1}{[g(x)]^2} \\ &= \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}. \end{align}</math>The limit evaluation <math>\lim_{k \to 0}\frac{1}{g(x+k)g(x)}=\frac{1}{[g(x)]^2}</math> is justified by the differentiability of <math>g(x)</math>, implying continuity, which can be expressed as <math>\lim_{k \to 0}g(x+k) = g(x)</math>. ===Proof using implicit differentiation=== Let <math>h(x) = \frac{f(x)}{g(x)},</math> so that <math>f(x) = g(x)h(x).</math> The [[product rule]] then gives <math>f'(x)=g'(x)h(x) + g(x)h'(x).</math> Solving for <math>h'(x)</math> and substituting back for <math>h(x)</math> gives: <math display="block">\begin{align} h'(x) &= \frac{f'(x) -g'(x)h(x)}{g(x)} \\ &= \frac{f'(x) - g'(x)\cdot\frac{f(x)}{g(x)}}{g(x)} \\ &= \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}. \end{align}</math> ===Proof using the reciprocal rule or chain rule=== Let <math>h(x) = \frac{f(x)}{g(x)} = f(x) \cdot \frac{1}{g(x)}.</math> Then the product rule gives <math>h'(x) = f'(x)\cdot\frac{1}{g(x)} + f(x) \cdot \frac{d}{dx}\left[\frac{1}{g(x)}\right].</math> To evaluate the derivative in the second term, apply the [[reciprocal rule]], or the [[power rule]] along with the [[chain rule]]: <math display="block">\frac{d}{dx}\left[\frac{1}{g(x)}\right] = -\frac{1}{g(x)^2} \cdot g'(x) = \frac{-g'(x)}{g(x)^2}.</math> Substituting the result into the expression gives<math display="block">\begin{align} h'(x) &= f'(x)\cdot\frac{1}{g(x)} + f(x)\cdot\left[\frac{-g'(x)}{g(x)^2}\right] \\ &= \frac{f'(x)}{g(x)} - \frac{f(x)g'(x)}{g(x)^2} \\ &= {\frac{g(x)}{g(x)}}\cdot{\frac{f'(x)}{g(x)}} - \frac{f(x)g'(x)}{g(x)^2} \\ &= \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}. \end{align}</math> === Proof by logarithmic differentiation === Let <math>h(x)=\frac{f(x)}{g(x)}.</math> Taking the [[absolute value]] and [[natural logarithm]] of both sides of the equation gives <math display="block">\ln|h(x)|=\ln\left|\frac{f(x)}{g(x)}\right|</math> Applying properties of the absolute value and logarithms, <math display="block">\ln|h(x)|=\ln|f(x)|-\ln|g(x)|</math> Taking the [[logarithmic derivative]] of both sides, <math display="block">\frac{h'(x)}{h(x)}=\frac{f'(x)}{f(x)}-\frac{g'(x)}{g(x)}</math> Solving for <math>h'(x)</math> and substituting back <math>\tfrac{f(x)}{g(x)}</math> for <math>h(x)</math> gives: <math display="block">\begin{align} h'(x)&=h(x)\left[\frac{f'(x)}{f(x)}-\frac{g'(x)}{g(x)}\right]\\ &=\frac{f(x)}{g(x)}\left[\frac{f'(x)}{f(x)}-\frac{g'(x)}{g(x)}\right]\\ &=\frac{f'(x)}{g(x)}-\frac{f(x)g'(x)}{g(x)^2}\\ &=\frac{f'(x)g(x)-f(x)g'(x)}{g(x)^2}. \end{align}</math> Taking the absolute value of the functions is necessary for the [[logarithmic differentiation]] of functions that may have negative values, as logarithms are only [[Real-valued function|real-valued]] for positive arguments. This works because <math>\tfrac{d}{dx}(\ln|u|)=\tfrac{u'}{u}</math>, which justifies taking the absolute value of the functions for logarithmic differentiation.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)