Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Radar
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Applications== [[File:Rotating marine radar - rotating waveguide antenna.gif|thumb|left|Commercial marine radar antenna. The rotating antenna radiates a vertical fan-shaped beam.]] The information provided by radar includes the bearing and range (and therefore position) of the object from the radar scanner. It is thus used in many different fields where the need for such positioning is crucial. The first use of radar was for military purposes: to locate air, ground and sea targets. This evolved in the civilian field into applications for aircraft, ships, and automobiles.<ref>{{Cite web|url=https://www.portvision.com/news-events/press-releases-news/ais-vs-radar-vessel-tracking-optionsportvision|title=AIS vs Radar: Vessel Tracking Options|last=Kline|first=Aaron|website=portvision.com|access-date=1 February 2019|archive-url=https://web.archive.org/web/20190202042639/https://www.portvision.com/news-events/press-releases-news/ais-vs-radar-vessel-tracking-optionsportvision|archive-date=2 February 2019|url-status=dead}}</ref><ref>{{Cite web|last=Quain|first=John|date=26 September 2019|title=These High-Tech Sensors May Be the Key to Autonomous Cars|url=https://www.nytimes.com/2019/09/26/business/autonomous-cars-sensors.html|access-date=5 June 2020|website=[[The New York Times]]|archive-date=5 June 2020|archive-url=https://web.archive.org/web/20200605113248/https://www.nytimes.com/2019/09/26/business/autonomous-cars-sensors.html|url-status=live}}</ref> In [[aviation]], aircraft can be equipped with radar devices that warn of aircraft or other obstacles in or approaching their path, display weather information, and give accurate altitude readings. The first commercial device fitted to aircraft was a 1938 Bell Lab unit on some [[United Air Lines]] aircraft.<ref name="Popular Mechanics-1941"/> Aircraft can land in fog at airports equipped with radar-assisted [[ground-controlled approach]] systems in which the plane's position is observed on [[precision approach radar]] screens by operators who thereby give radio landing instructions to the pilot, maintaining the aircraft on a defined approach path to the runway. Military fighter aircraft are usually fitted with air-to-air targeting radars, to detect and target enemy aircraft. In addition, larger specialized military aircraft carry powerful airborne radars to observe air traffic over a wide region and direct fighter aircraft towards targets.<ref>{{Cite web|url=http://www.nato.int/nato_static/assets/pdf/pdf_publications/20120103_awacs-e.pdf|title="AWACS: Nato's eyes in the sky"|date=2007|website=NATO|access-date=26 March 2020|archive-date=4 October 2023|archive-url=https://web.archive.org/web/20231004005409/https://www.nato.int/nato_static/assets/pdf/pdf_publications/20120103_awacs-e.pdf|url-status=live}}</ref> [[Marine radar]]s are used to measure the bearing and distance of ships to prevent collision with other ships, to navigate, and to fix their position at sea when within range of shore or other fixed references such as islands, buoys, and lightships. In port or in harbour, [[vessel traffic service]] radar systems are used to monitor and regulate ship movements in busy waters.<ref>{{Cite web|url=https://www.terma.com/surveillance-mission-systems/radar-systems/vessel-traffic-services/|title=Terma|date=8 April 2019}}</ref> Meteorologists use radar to monitor [[precipitation]] and wind. It has become the primary tool for short-term [[weather forecast]]ing and watching for [[severe weather]] such as [[thunderstorm]]s, [[tornado]]es, [[winter storm]]s, precipitation types, etc. [[Geologist]]s use specialized [[ground-penetrating radar]]s to map the composition of [[Crust (geology)|Earth's crust]]. Police forces use [[radar gun]]s to monitor vehicle speeds on the roads. Automotive radars are used for adaptive cruise control and emergency braking on vehicles by ignoring stationary roadside objects that could cause incorrect brake application and instead measuring moving objects to prevent collision with other vehicles. As part of [[Intelligent Transport Systems]], fixed-position stopped vehicle detection (SVD) radars are mounted on the roadside to detect stranded vehicles, obstructions and debris by inverting the automotive radar approach and ignoring moving objects.<ref>{{Cite web |title=Stopped Vehicle Detection (SVD) Comparison with Automotive Radar |url=https://ogierelectronics.com/wp-content/uploads/2024/03/svr-500-comparison-with-automotive-radar.pdf |archive-url=https://web.archive.org/web/20240609110752/https://ogierelectronics.com/wp-content/uploads/2024/03/svr-500-comparison-with-automotive-radar.pdf |archive-date=2024-06-09|website=Ogier Electronics |url-status=live}}</ref> Smaller radar systems are used to [[Motion detector|detect human movement]]. Examples are breathing pattern detection for sleep monitoring<ref>{{cite web|url=https://sleep.mysplus.com/technology.html|title=The Technology Behind S+|website=Sleep.mysplus.com|access-date=29 October 2017|archive-date=27 August 2016|archive-url=https://web.archive.org/web/20160827084238/https://sleep.mysplus.com/technology.html|url-status=dead}}</ref> and hand and finger [[gesture recognition|gesture detection]] for computer interaction.<ref>{{cite web|url=https://atap.google.com/soli/|title=Project Soli|website=Atap.google.com|access-date=29 October 2017|archive-date=2 February 2017|archive-url=https://web.archive.org/web/20170202031805/https://atap.google.com/soli/|url-status=live}}</ref> Automatic door opening, light activation and intruder sensing are also common.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)