Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ray transfer matrix analysis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Eigenvalues == A ray transfer matrix can be regarded as a [[linear canonical transformation]]. According to the eigenvalues of the optical system, the system can be classified into several classes.{{sfnp|Bastiaans|Alieva|2007}} Assume the ABCD matrix representing a system relates the output ray to the input according to <math display="block"> \begin{bmatrix}x_2 \\ \theta_2\end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix}x_1 \\ \theta_1\end{bmatrix} =\mathbf{T}\mathbf{v} .</math> We compute the eigenvalues of the matrix <math> \mathbf{T} </math> that satisfy eigenequation <math display="block"> [\boldsymbol{T}-\lambda I] \mathbf{v} = \begin{bmatrix} A-\lambda & B \\ C & D-\lambda \end{bmatrix} \mathbf{v} = 0 ,</math> by calculating the determinant <math display="block"> \begin{vmatrix} A-\lambda & B \\ C & D-\lambda \end{vmatrix} = \lambda^2 - (A+D) \lambda + 1 = 0 .</math> Let <math>m = \frac{(A+D)}{2}</math>, and we have eigenvalues <math>\lambda_{1}, \lambda_{2}=m \pm \sqrt{m^{2}-1}</math>. According to the values of <math>\lambda_{1}</math> and <math>\lambda_{2}</math>, there are several possible cases. For example: # A pair of real eigenvalues: <math>r</math> and <math>r^{-1}</math>, where <math>r\neq1</math>. This case represents a magnifier <math> \begin{bmatrix} r & 0 \\ 0 & r^{-1} \end{bmatrix} </math> # <math>\lambda_{1}=\lambda_{2}=1</math> or <math>\lambda_{1}=\lambda_{2}=-1</math>. This case represents unity matrix (or with an additional coordinate reverter) <math> \begin{bmatrix} 1 & 0 \\ 0 & 1\end{bmatrix} </math>. # <math>\lambda_{1}, \lambda_{2}=\pm1</math>. This case occurs if but not only if the system is either a unity operator, a section of free space, or a lens # A pair of two unimodular, complex conjugated eigenvalues <math>e^{i\theta}</math> and <math>e^{-i\theta}</math>. This case is similar to a separable [[Fractional Fourier transform|Fractional Fourier Transform]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)