Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Recall (memory)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Types== ===Free recall=== {{Main|Free recall}} Free recall describes the process in which a person is given a list of items to remember and then is tested by being asked to recall them in any order.<ref name="Bower"/> Free recall often displays evidence of [[Serial position effect|primacy]] and [[serial position effect|recency effects]]. Primacy effects are displayed when the person recalls items presented at the beginning of the list earlier and more often. The recency effect is when the person recalls items presented at the end of the list earlier and more often.<ref name="Bower"/> Free recall often begins with the end of the list and then moves to the beginning and middle of the list.<ref name="Tarnow, E. 2015"/> ===Cued recall=== Cued recall is when a person is given a list of items to remember and is then tested with cues to remember material. Researchers have used this procedure to test memory. Participants are given pairs, usually of words, A1-B1, A2-B2...An-Bn (n is the number of pairs in a list) to study. Then the experimenter gives the participant a word to cue the participant to recall the word with which it was originally paired. The word presentation can either be visual or auditory. There are two basic experimental methods used to conduct cued recall, the study-test method and the anticipation method. In the study-test method participants study a list of word pairs presented individually. Immediately after or after a time delay, participants are tested in the study phase of the experiment on the word pairs just previously studied. One word of each pair is presented in a random order and the participant is asked to recall the item with which it was originally paired. The participant can be tested for either forward recall, Ai is presented as a cue for Bi, or backward recall, Bi is presented as a cue for Ai. In the anticipation method, participants are shown Ai and are asked to anticipate the word paired with it, Bi. If the participant cannot recall the word, the answer is revealed. During an experiment using the anticipation method, the list of words is repeated until a certain percentage of Bi words are recalled. The learning curve for cued recall increases systematically with the number of trials completed. This result has caused a debate about whether or not learning is all-or-none. One theory is that learning is incremental and that the recall of each word pair is strengthened with repetition. Another theory suggests that learning is all-or-none, that is one learns the word pair in a single trial and memory performance is due to the average learned pairs, some of which are learned on earlier trials and some on later trials. To examine the validity of these theories researchers have performed memory experiments. In one experiment published in 1959, experimental psychologist [[Irvin Rock]] and colleague Walter Heimer of the University of Illinois had both a control group and an experimental group learn pairs of words. The control group studied word pairs that were repeated until the participants learned all the word pairs. In the experimental group, the learned pairs remained in the list while unlearned pairs were substituted with recombinations of previous words. Rock believed that associations between two items would be strengthened if learning were incremental even when pairs are not correctly recalled. His hypothesis was that the control group would have a higher correct recall probability than the experimental group. He thought that repetition would increase the strength of the word pair until the strength reaches a threshold needed to produce an overt response. If learning were all or none, then the control group and the experimental group should learn the word pairs at the same rate. Rock found experimentally there was little difference in learning rates between the two groups. However, Rock's work did not settle the controversy because in his experiment he rearranged replaced word pairs that could be either easier or harder to learn than the original words in the word- digit pair. In further experiments that addressed the question, there were mixed results. The incremental learning hypothesis is supported by the notion that awhile after Ai-Bi pairs are learned, the recall time to recall Bi decreases with continued learning trails.<ref>{{cite journal|last=Rock|first=Irvin|author2=Walter Helmer |title=Further Evidence of One Trial Associative Learning|journal=The American Journal of Psychology|volume=72|issue=1|pages=1β16|year=1959|doi=10.2307/1420207|jstor=1420207}}</ref> Another theory that can be tested using cued recall is symmetry of forward and backward recall. Forward recall is generally assumed to be easier than backward recall, i.e. forward recall is stronger than backward recall. This is generally true for long sequences of word or letters such as the alphabet. In one view, the independent associations hypothesis, the strength of forward and backward recall are hypothesized to be independent of each other. To confirm this hypothesis, Dr. George Wolford tested participants' forward and backward recall and found that forward and backward recall are independent of each other. The probability of correct forward recall was .47 for word pair associations and the probability of correct backward recall of word pair associations was .25.<ref>{{Cite journal |doi = 10.1037/h0031032|title = Function of distinct associations for paired-associate performance|journal = Psychological Review|volume = 78|issue = 4|pages = 303β313|year = 1971|last1 = Wolford|first1 = George}}</ref> However, in another view, the associative symmetry hypothesis, the strengths of forward and backward recall are about equal and highly correlated. In S.E Asch from Swarthmore College and S. M Ebenholtz's experiment, participants learned pairs of nonsense syllables by anticipation recall. After reaching a certain threshold of learning, the participants were tested by free recall to determine all pairs and single items they could remember. These researchers found that backward association was greatly weaker than forward association. However, when the availability of forward and backward recall were basically the same, there was little difference between forward and backward recall.<ref>{{cite journal|last=Asch|first=Solomon. E.|author2=S.M Ebenholtz |title=The Principle of Associative Symmetry|journal=Proceedings of the American Philosophical Society|date=Apr 30, 1962}}</ref> Some scientists including Asch and Ebenholtz believe in the independent association hypothesis think that the equal strengths of forward and backward recall are compatible with their hypothesis because forward and backward recall could be independent but with equal strengths. However associative symmetry theorists interpreted the data to mean that the results fit their hypothesis. Another study done using cued recall found that learning occurs during test trials. Mark Carrier and Pashler (1992) found that the group with a study-only phase makes 10% more errors than the group with a test-study phase. In the study-only phase, participants were given Ai-Bi, where Ai was an English word and Bi was a Siberian Eskimo Yupik word. In the test study phase, participants first attempted to recall Bi given Ai as a cue then they were shown Ai-Bi pair together. This result suggests that after participants learn something, testing their memory with mental operations helps later recall. The act of recalling instead of restudying creates new and longer lasting connection between Ai and Bi.<ref>{{cite journal|last=Carrier|first=Mark|author2=Pashler Harold |title=The Influence of Retrieval on Retention |journal=Memory and Cognition |volume=20 |issue=6|pages=633β642|date=Nov 1992|doi=10.3758/BF03202713|pmid=1435266|doi-access=free}}</ref> This phenomenon is commonly referred to as the [[testing effect]].<ref>{{Cite book|title=Make it Stick|url=https://archive.org/details/makeitstickscien0000brow|url-access=limited|last1=Brown|first1=Peter C.|last2=Roediger III|first2=Henry L.|last3=McDaniel|first3=Mark A.|publisher=The Belknap Press of Harvard University Press|year=2014|isbn=9780674729018|location=Cambridge, Massachusetts|pages=[https://archive.org/details/makeitstickscien0000brow/page/28 28]β43}}</ref> Another study showed that when lists are tested immediately after study, the last couple of pairs are remembered best. After a five-second delay, the recall of recently studied words diminishes. However, word pairs at the beginning of a list still show better recall. Moreover, in a longer list, the absolute number of word pairs recalled is greater but in a shorter list of word pairs, the percentage of word pairs recalled is greater. Sometimes, when recalling word pairs, there is an intrusion. An intrusion is an error that participants make when they attempt to recall a word based on a cue of that word pair. Intrusions tend to have either [[Semantics|semantic]] attributes in common with the correct word not recalled or have been previously studied in another word pair on the current list or a previously studied list or were close in time to the cue item. When two items are similar, an intrusion may occur. Professor Kahana and Marieke Vugt at the University of Pennsylvania examined the effects of face similarity for face-name associations. In the first experiment, they wanted to determine if performance of recall would vary with the number of faces in the study set that were similar to the cue face. Faces were similar if the radius of the faces were within a range. The number of faces within a radius is called a neighborhood density. They found that the recall of a name to face exhibited a lower accuracy and slower reaction time for faces with a greater neighborhood density. The more similarity that two faces have, the greater the probability for interference between the two faces. When cued with face A, name B may be recalled if face A and B are similar, which would signify that an intrusion has occurred. The probability of correct recall came from the number of faces that had other similar faces.<ref>{{cite journal|last=Kahana|first=Michael|author2=Marieke K Vugt |title=Why are Some People's Names Easier to Learn than Others? The Effect of Face Similarity on Memory for Face-Name Associations|journal=Memory & Cognition|year=2008|doi=10.3758/mc.36.6.1182|pmid=18927036|volume=36|issue=6|pages=1182β1195|pmc=2731934}}</ref> Cues act as guides to what the person is supposed to remember. A cue can be virtually anything that may act as a reminder, e.g. a smell, song, color, place etc. In contrast to free recall, the subject is prompted to remember a certain item on the list or remember the list in a certain order. Cued recall also plays into free recall because when cues are provided to a subject, they will remember items on the list that they did not originally recall without a cue. Tulving explained this phenomenon in his research. When he gave participants associative cues to items that they did not originally recall and that were thought to be lost to memory, the participants were able to recall the item.<ref>{{cite journal | last1 = Tulving | first1 = E. | last2 = Pearlstone | first2 = Z. | year = 1966 | title = Availability versus accessibility of information in memory for words | url = http://www.alicekim.ca/7.ET_Pearlstone.pdf | journal = Journal of Verbal Learning and Verbal Behavior | volume = 5 | issue = 4| pages = 381β391 | doi=10.1016/s0022-5371(66)80048-8}}</ref> ===Serial recall=== Serial recall is the ability to recall items or events in the order in which they occurred.<ref name="Henson">Henson, R. (1996). Short-term memory for serial order. Dissertation for PhD of Philosophy. St. John's College, University of Cambridge</ref> The ability of humans to store items in memory and recall them is important to the use of language. Imagine recalling the different parts of a sentence, but in the wrong order. The ability to recall in serial order has been found not only in humans, but in a number of non-human primate species and some non-primates.<ref name="Botvinick"/> Imagine mixing up the order of [[phonemes]], or meaningful units of sound, in a word so that "slight" becomes "style." Serial-order also helps us remember the order of events in our lives, our autobiographical memories. Our memory of our past appears to exist on a continuum on which more recent events are more easily remembered in order.<ref name="Henson"/> Serial recall in [[long-term memory]] (LTM) differs from serial recall in [[short-term memory]] (STM). To store a sequence in LTM, the sequence is repeated over time until it is represented in memory as a whole, rather than as a series of items. In this way, there is no need to remember the relationships between the items and their original positions.<ref name="Botvinick"/> In STM, immediate serial recall (ISR) has been thought to result from one of two mechanisms. The first refers to ISR as a result of associations between the items and their positions in a sequence, while the second refers to associations between items. These associations between items are referred to as chaining, and is an unlikely mechanism, according to research. {{citation needed|date=May 2014}} Position-item relationships do not account for recency and primacy effects, or the phonological similarity effect. The Primacy Model moves away from these two assumptions, suggesting that ISR results from a gradient of activation levels where each item has a particular level of activation that corresponds to its position.<ref name="Page">{{cite journal | last1 = Page | first1 = M. | last2 = Norris | first2 = D. | year = 1998 | title = The primacy model: A new model of immediate serial recall | journal = Psychological Review | volume = 105 | issue = 4| pages = 761β781 | doi=10.1037/0033-295x.105.4.761-781| pmid = 9830378 }}</ref> Research has supported the fact that immediate serial recall performance is much better when the list is homogenous (of the same semantic category) than when they are heterogeneous (of different semantic category). This suggests that semantic representations are beneficial to immediate serial recall performance.<ref>{{cite journal|last=Poirier|first=Marie|author2=Jean Saint-Aubin |title=Memory for Related and Unrelated Words: Further Evidence on the Influence of Semantic Factors in Immediate Serial Recall|journal=The Quarterly Journal of Experimental Psychology|year=1995|volume=48|issue=2|pages=384β404|doi=10.1080/14640749508401396|pmid=7610273|s2cid=1167110}}</ref> Short-term serial recall is also affected by similar-sounding items, as recall is lower (remembered more poorly) than items that do not sound alike. This is true when lists are tested independently (when comparing two separate lists of similar-sounding and not similar-sounding items) as well as when tested using a mixed list. [[Alan Baddeley]] first reported such an experiment in which items within a list were either mutually dissimilar or highly similar. There is evidence indicating that rhythm is highly sensitive to competing motor production. Actions such as paced finger tapping can have an effect on recall as the disruptive impact of paced finger tapping, but lack of consistent effect of paced irrelevant sound, is indicative of motor feedback from the tapping task disrupting rehearsal and storage.<ref>{{cite journal|last=Hall|first=Debbora|author2=Susan E. Gathercole |title=Serial recall of rhythms and verbal sequences: Impacts of concurrent tasks and irrelevant sound|journal=Quarterly Journal of Experimental Psychology|date=February 2011|issue=1|doi=10.1080/17470218.2011.564636|pmid=21563018|volume=64|pages=1580β1592|s2cid=35493398}}</ref> Eight different effects are generally seen in serial recall studies with humans: ; 1. List length effect: Serial recall ability decreases as the length of the list or sequence increases. ; 2. [[Serial position effect|Primacy and recency effects]]: Primacy effects refer to better recall of items earlier in the sequence, while recency effects refer to better recall of the last few items. Recency effects are seen more with auditory [[Stimulus (psychology)|stimuli]] rather than verbal stimuli as auditory presentation seems to protect the end of lists from output interference.<ref>{{cite journal|last=Cowan|first=Nelson|author2=J. Scott Saults |author3=Emily M. Elliott |author4=Matthew V. Moreno |title=Deconfounding Serial Recall|journal=Journal of Memory and Language|year=2002|volume=46|pages=153β177|doi=10.1006/jmla.2001.2805|s2cid=20450466}}</ref> ; 3. Transposition gradients: Transposition gradients refer to the fact that recall tends to be better to recognize what an item is rather than the order of items in a sequence. ; 4. Item confusion errors: When an item is incorrectly recalled, there is a tendency to respond with an item that resembles the original item in that position. ; 5. Repetition errors: These occur during the recall of a sequence when an item from an earlier position in the sequence is given again in another position. This effect is fairly rare in humans. ; 6. Fill-in effects: If an item is recalled incorrectly at an earlier position than its original place, there is a tendency for the next item recalled to be the item that was displaced by this error. For example, if the sequence is '1234' and recall began '124', then the next item is likely to be '3'. ; 7. Protrusion effects: These occur when an item from a previous list or test is accidentally recalled on a new list or test. This item is likely to be recalled at its position from the original trial.<ref name="Botvinick"/> ; 8. Word-length effects: Short words are recalled more accurately than longer words.<ref>{{cite journal|last=Avons|first=S.E. |author2=K.L. Wright |author3=Kristen Pammer|title=The word-length effect in probed and serial recall|journal=The Quarterly Journal of Experimental Psychology|year=1994|volume=47|issue=1|pages=207β231|doi=10.1080/14640749408401151|s2cid=143692674 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)