Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Reciprocal lattice
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Two dimensions=== For an infinite two-dimensional lattice, defined by its [[primitive cell|primitive vector]]s <math>\left(\mathbf{a}_1, \mathbf{a}_2\right)</math>, its reciprocal lattice can be determined by generating its two reciprocal primitive vectors, through the following formulae, :<math>\mathbf{G}_m = m_1 \mathbf{b}_1 + m_2 \mathbf{b}_2</math> where <math>m_i</math> is an integer and :<math>\begin{align} \mathbf{b}_1 &= 2\pi \frac{-\mathbf{Q} \, \mathbf{a}_2}{-\mathbf{a}_1 \cdot \mathbf{Q} \, \mathbf{a}_2} = 2\pi \frac{ \mathbf{Q} \, \mathbf{a}_2}{ \mathbf{a}_1 \cdot \mathbf{Q} \, \mathbf{a}_2} \\[8pt] \mathbf{b}_2 &= 2\pi \frac{ \mathbf{Q} \, \mathbf{a}_1}{ \mathbf{a}_2 \cdot \mathbf{Q} \, \mathbf{a}_1} \end{align}</math> Here <math>\mathbf{Q}</math> represents a 90 degree [[rotation matrix]], i.e. a ''q''uarter turn. The anti-clockwise rotation and the clockwise rotation can both be used to determine the reciprocal lattice: If <math>\mathbf{Q}</math> is the anti-clockwise rotation and <math>\mathbf{Q'}</math> is the clockwise rotation, <math>\mathbf{Q}\,\mathbf{v}=-\mathbf{Q'}\,\mathbf{v}</math> for all vectors <math>\mathbf{v}</math>. Thus, using the [[Permutation#Two-line notation|permutation]] : <math>\sigma = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}</math> we obtain :<math> \mathbf{b}_n = 2\pi \frac{ \mathbf{Q} \, \mathbf{a}_{\sigma(n)}}{ \mathbf{a}_n \cdot \mathbf{Q} \, \mathbf{a}_{\sigma(n)}}=2\pi \frac{ \mathbf{Q}' \, \mathbf{a}_{\sigma(n)}}{ \mathbf{a}_n \cdot \mathbf{Q}' \, \mathbf{a}_{\sigma(n)}}. </math> Notably, in a 3D space this 2D reciprocal lattice is an infinitely extended set of Bragg rods—described by Sung et al.<ref name="hovden2019">{{Cite journal| last1=Sung|first1=S.H.| last2=Schnitzer|first2=N.| last3=Brown|first3=L.| last4=Park|first4=J.| last5=Hovden|first5=R.| date=2019-06-25|title=Stacking, strain, and twist in 2D materials quantified by 3D electron diffraction| journal=Physical Review Materials|volume=3|issue=6| pages=064003| doi=10.1103/PhysRevMaterials.3.064003| bibcode=2019PhRvM...3f4003S| arxiv=1905.11354| s2cid=166228311}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)