Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Regression analysis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===General linear model=== {{Hatnote|For a derivation, see [[linear least squares]]}} {{Hatnote|For a numerical example, see [[linear regression]]}} In the more general multiple regression model, there are <math>p</math> independent variables: : <math> y_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip} + \varepsilon_i, \, </math> where <math>x_{ij}</math> is the <math>i</math>-th observation on the <math>j</math>-th independent variable. If the first independent variable takes the value 1 for all <math>i</math>, <math>x_{i1} = 1</math>, then <math>\beta_1</math> is called the [[regression intercept]]. The least squares parameter estimates are obtained from <math>p</math> normal equations. The residual can be written as :<math>\varepsilon_i=y_i - \hat\beta_1 x_{i1} - \cdots - \hat\beta_p x_{ip}.</math> The '''normal equations''' are :<math>\sum_{i=1}^n \sum_{k=1}^p x_{ij}x_{ik}\hat \beta_k=\sum_{i=1}^n x_{ij}y_i,\ j=1,\dots,p.\,</math> In matrix notation, the normal equations are written as :<math>\mathbf{(X^\top X )\hat{\boldsymbol{\beta}}= {}X^\top Y},\,</math> where the <math>ij</math> element of <math>\mathbf X</math> is <math>x_{ij}</math>, the <math>i</math> element of the column vector <math>Y</math> is <math>y_i</math>, and the <math>j</math> element of <math>\hat \boldsymbol \beta</math> is <math>\hat \beta_j</math>. Thus <math>\mathbf X</math> is <math>n \times p</math>, <math>Y</math> is <math>n \times 1</math>, and <math>\hat \boldsymbol \beta</math> is <math>p \times 1</math>. The solution is :<math>\mathbf{\hat{\boldsymbol{\beta}}= (X^\top X )^{-1}X^\top Y}.\,</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)