Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Riesz representation theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Riesz representation theorem == Two vectors <math>x</math> and <math>y</math> are {{em|[[Orthogonal vectors|orthogonal]]}} if <math>\langle x, y \rangle = 0,</math> which happens if and only if <math>\|y\| \leq \|y + s x\|</math> for all scalars <math>s.</math>{{sfn|Rudin|1991|pp=306-312}} The [[orthogonal complement]] of a subset <math>X \subseteq H</math> is <math display=block>X^{\bot} := \{ \,y \in H : \langle y, x \rangle = 0 \text{ for all } x \in X\, \},</math> which is always a [[closed set|closed]] vector subspace of <math>H.</math> The [[Hilbert projection theorem]] guarantees that for any [[NonEmpty|nonempty]] closed [[convex subset]] <math>C</math> of a [[Hilbert space]] there exists a unique vector <math>m \in C</math> such that <math>\|m\| = \inf_{c \in C} \|c\|;</math> that is, <math>m \in C</math> is the (unique) [[global minimum point]] of the function <math>C \to [0, \infty)</math> defined by <math>c \mapsto \|c\|.</math> ===Statement=== {{Math theorem |name = {{visible anchor|Riesz representation theorem}} |math_statement = Let <math>H</math> be a [[Hilbert space]] whose [[inner product]] <math>\left\langle x, y \right\rangle</math> is linear in its {{em|first}} argument and [[Antilinear map|antilinear]] in its second argument and let <math>\langle y \mid x \rangle := \langle x, y \rangle</math> be the corresponding physics notation. For every continuous linear functional <math>\varphi \in H^*,</math> there exists a unique vector <math>f_{\varphi} \in H,</math> called the {{em|{{visible anchor|Riesz representation|Riesz representative}} of <math>\varphi,</math>}}<!-- the term "Riesz representation of" seems to be more commonly used than "Riesz representative of" --> such that<ref>{{harvnb|Roman|2008|loc=p. 351 Theorem 13.32}}</ref> <math display=block>\varphi(x) = \left\langle x, f_{\varphi} \right\rangle = \left\langle f_\varphi \mid x \right\rangle \quad \text{ for all } x \in H.</math> Importantly for {{em|complex}} Hilbert spaces, <math>f_{\varphi}</math> is always located in the {{em|antilinear}} coordinate of the inner product.<ref name="ImportanceOfLocationOfRieszRep" group="note" /> Furthermore, the length of the representation vector is equal to the norm of the functional: <math display=block>\left\|f_\varphi\right\|_H = \|\varphi\|_{H^*},</math> and <math>f_{\varphi}</math> is the unique vector <math>f_{\varphi} \in \left(\ker \varphi\right)^{\bot}</math> with <math>\varphi\left(f_{\varphi}\right) = \|\varphi\|^2.</math> It is also the unique element of minimum norm in <math>C := \varphi^{-1}\left(\|\varphi\|^2\right)</math>; that is to say, <math>f_{\varphi}</math> is the unique element of <math>C</math> satisfying <math>\left\|f_{\varphi}\right\| = \inf_{c \in C} \|c\|.</math> Moreover, any non-zero <math>q \in (\ker \varphi)^{\bot}</math> can be written as <math>q = \left(\|q\|^2 /\, \overline{\varphi(q)}\right)\ f_{\varphi}.</math> }} {{Math theorem | name = Corollary | math_statement = The {{em|canonical map from <math>H</math> into its dual}} <math>H^*</math>{{sfn|Trèves|2006|pp=112–123}} is the [[Injective map|injective]] [[Antilinear map|{{em|anti}}linear operator]] [[isometry]]<ref group=note name="AntilinearIsometryDef" />{{sfn|Trèves|2006|pp=112–123}} <math display=block>\begin{alignat}{4} \Phi :\;&& H &&\;\to \;& H^* \\[0.3ex] && y &&\;\mapsto\;& \langle \,\cdot\,, y \rangle = \langle y | \,\cdot\, \rangle \\ \end{alignat}</math> The Riesz representation theorem states that this map is [[Surjective map|surjective]] (and thus [[Bijective map|bijective]]) when <math>H</math> is complete and that its inverse is the [[Bijective map|bijective]] [[Isometry|isometric]] antilinear isomorphism <math display=block>\begin{alignat}{4} \Phi^{-1} :\;&& H^* &&\;\to \;& H \\[0.3ex] && \varphi &&\;\mapsto\;& f_{\varphi} \\ \end{alignat}.</math> Consequently, {{em|every}} continuous linear functional on the Hilbert space <math>H</math> can be written uniquely in the form <math>\langle y\, | \,\cdot\, \rangle</math>{{sfn|Trèves|2006|pp=112–123}} where <math>\|\langle y\,| \cdot \rangle\|_{H^*} = \|y\|_H</math> for every <math>y \in H.</math> The assignment <math>y \mapsto \langle y, \cdot \rangle = \langle \cdot\,| \,y \rangle</math> can also be viewed as a bijective {{em|linear}} isometry <math>H \to \overline{H}^*</math> into the [[Antilinear map|anti-dual space]] of <math>H,</math>{{sfn|Trèves|2006|pp=112–123}} which is the [[complex conjugate vector space]] of the [[continuous dual space]] <math>H^*.</math> The inner products on <math>H</math> and <math>H^*</math> are related by <math display=block>\left\langle \Phi h, \Phi k \right\rangle_{H^*} = \overline{\langle h, k \rangle}_H = \langle k, h \rangle_H \quad \text{ for all } h, k \in H</math> and similarly, <math display=block>\left\langle \Phi^{-1} \varphi, \Phi^{-1} \psi \right\rangle_H = \overline{\langle \varphi, \psi \rangle}_{H^*} = \left\langle \psi, \varphi \right\rangle_{H^*} \quad \text{ for all } \varphi, \psi \in H^*.</math> The set <math>C := \varphi^{-1}\left(\|\varphi\|^2\right)</math> satisfies <math>C = f_{\varphi} + \ker \varphi</math> and <math>C - f_{\varphi} = \ker \varphi</math> so when <math>f_{\varphi} \neq 0</math> then <math>C</math> can be interpreted as being the [[affine hyperplane]]<ref group=note name="VectorSpaceStructureOnAffineHyperplanesInducedByDualSpace" /> that is parallel to the vector subspace <math>\ker \varphi</math> and contains <math>f_{\varphi}.</math> For <math>y \in H,</math> the physics notation for the functional <math>\Phi(y) \in H^*</math> is the bra <math>\langle y |,</math> where explicitly this means that <math>\langle y | := \Phi(y),</math> which complements the ket notation <math>| y \rangle</math> defined by <math>| y \rangle := y.</math> In the mathematical treatment of [[quantum mechanics]], the theorem can be seen as a justification for the popular [[bra–ket notation]]. The theorem says that, every bra <math>\langle\psi\,|</math> has a corresponding ket <math>|\,\psi\rangle,</math> and the latter is unique. }} Historically, the theorem is often attributed simultaneously to [[Frigyes Riesz|Riesz]] and [[Maurice René Fréchet|Fréchet]] in 1907 (see references). {{collapse top|title=Proof{{sfn|Rudin|1991|pp=307−309}}|left=true}} Let <math>\mathbb{F}</math> denote the underlying scalar field of <math>H.</math> {{em|Proof of norm formula:}} Fix <math>y \in H.</math> Define <math>\Lambda : H \to \mathbb{F}</math> by <math>\Lambda(z) := \langle \,y\, | \,z\, \rangle,</math> which is a linear functional on <math>H</math> since <math>z</math> is in the linear argument. By the [[Cauchy–Schwarz inequality]], <math display=block>|\Lambda(z)| = |\langle \,y\, | \,z\, \rangle| \leq \|y\| \|z\|</math> which shows that <math>\Lambda</math> is bounded (equivalently, [[Continuous linear functional|continuous]]) and that <math>\|\Lambda\| \leq \|y\|.</math> It remains to show that <math>\|y\| \leq \|\Lambda\|.</math> By using <math>y</math> in place of <math>z,</math> it follows that <math display=block>\|y\|^2 = \langle \,y\, | \,y\, \rangle = \Lambda y = |\Lambda(y)| \leq \|\Lambda\| \|y\|</math> (the equality <math>\Lambda y = |\Lambda(y)|</math> holds because <math>\Lambda y = \|y\|^2 \geq 0</math> is real and non-negative). Thus that <math>\|\Lambda\| = \|y\|.</math> <math>\blacksquare</math> The proof above did not use the fact that <math>H</math> is [[Complete metric space|complete]], which shows that the formula for the norm <math>\|\langle \,y\, | \,\cdot\, \rangle\|_{H^*} = \|y\|_H</math> holds more generally for all [[inner product space]]s. {{hr|1}} {{em|Proof that a Riesz representation of <math>\varphi</math> is unique:}} Suppose <math>f, g \in H</math> are such that <math>\varphi(z) = \langle \,f\, | \,z\, \rangle</math> and <math>\varphi(z) = \langle \,g\, | \,z\, \rangle</math> for all <math>z \in H.</math> Then <math display=block>\langle \,f - g\, | \,z\, \rangle = \langle \,f\, | \,z\, \rangle - \langle \,g\, | \,z\, \rangle = \varphi(z) - \varphi(z) = 0 \quad \text{ for all } z \in H</math> which shows that <math>\Lambda := \langle \,f - g\, | \,\cdot\, \rangle</math> is the constant <math>0</math> linear functional. Consequently <math>0 = \|\langle \,f - g\, | \,\cdot\, \rangle\| = \|f - g\|,</math> which implies that <math>f - g = 0.</math> <math>\blacksquare</math> {{hr|1}} {{em|Proof that a vector <math>f_{\varphi}</math> representing <math>\varphi</math> exists:}} Let <math>K := \ker \varphi := \{ m \in H : \varphi(m) = 0 \}.</math> If <math>K = H</math> (or equivalently, if <math>\varphi = 0</math>) then taking <math>f_{\varphi} := 0</math> completes the proof so assume that <math>K \neq H</math> and <math>\varphi \neq 0.</math> The continuity of <math>\varphi</math> implies that <math>K</math> is a closed subspace of <math>H</math> (because <math>K = \varphi^{-1}(\{ 0 \})</math> and <math>\{ 0 \}</math> is a closed subset of <math>\mathbb{F}</math>). Let <math display=block>K^{\bot} := \{ v \in H ~:~ \langle \,v\, | \,k\, \rangle = 0 ~ \text{ for all } k \in K\}</math> denote the [[orthogonal complement]] of <math>K</math> in <math>H.</math> Because <math>K</math> is closed and <math>H</math> is a Hilbert space,<ref group=note>Showing that there is a non-zero vector <math>v</math> in <math>K^{\bot}</math> relies on the continuity of <math>\phi</math> and the [[Cauchy completeness]] of <math>H.</math> This is the only place in the proof in which these properties are used.</ref> <math>H</math> can be written as the direct sum <math>H = K \oplus K^{\bot}</math><ref group=note>Technically, <math>H = K \oplus K^{\bot}</math> means that the addition map <math>K \times K^{\bot} \to H</math> defined by <math>(k, p) \mapsto k + p</math> is a surjective [[linear isomorphism]] and [[homeomorphism]]. See the article on [[complemented subspace]]s for more details.</ref> (a proof of this is given in the article on the [[Hilbert projection theorem]]). Because <math>K \neq H,</math> there exists some non-zero <math>p \in K^{\bot}.</math> For any <math>h \in H,</math> <math display=block>\varphi[(\varphi h) p - (\varphi p) h] ~=~ \varphi[(\varphi h) p] - \varphi[(\varphi p) h] ~=~ (\varphi h) \varphi p - (\varphi p) \varphi h = 0,</math> which shows that <math>(\varphi h) p - (\varphi p) h ~\in~ \ker \varphi = K,</math> where now <math>p \in K^{\bot}</math> implies <math display=block>0 = \langle \,p\, | \,(\varphi h) p - (\varphi p) h\, \rangle ~=~ \langle \,p\, | \,(\varphi h) p \, \rangle - \langle \,p\, | \,(\varphi p) h\, \rangle ~=~ (\varphi h) \langle \,p\, | \,p \, \rangle - (\varphi p) \langle \,p\, | \,h\, \rangle.</math> Solving for <math>\varphi h</math> shows that <math display=block>\varphi h = \frac{(\varphi p) \langle \,p\, | \,h\, \rangle}{\|p\|^2} = \left\langle \,\frac{\overline{\varphi p}}{\|p\|^2} p\, \Bigg| \,h\, \right\rangle \quad \text{ for every } h \in H,</math> which proves that the vector <math>f_{\varphi} := \frac{\overline{\varphi p}}{\|p\|^2} p</math> satisfies <math>\varphi h = \langle \,f_{\varphi}\, | \,h\, \rangle \text{ for every } h \in H.</math> Applying the norm formula that was proved above with <math>y := f_{\varphi}</math> shows that <math>\|\varphi\|_{H^*} = \left\|\left\langle \,f_{\varphi}\, | \,\cdot\, \right\rangle\right\|_{H^*} = \left\|f_{\varphi}\right\|_H.</math> Also, the vector <math>u := \frac{p}{\|p\|}</math> has norm <math>\|u\| = 1</math> and satisfies <math>f_{\varphi} := \overline{\varphi(u)} u.</math> <math>\blacksquare</math> {{hr|1}} It can now be deduced that <math>K^{\bot}</math> is <math>1</math>-dimensional when <math>\varphi \neq 0.</math> Let <math>q \in K^{\bot}</math> be any non-zero vector. Replacing <math>p</math> with <math>q</math> in the proof above shows that the vector <math>g := \frac{\overline{\varphi q}}{\|q\|^2} q</math> satisfies <math>\varphi(h) = \langle \,g\, | \,h\, \rangle</math> for every <math>h \in H.</math> The uniqueness of the (non-zero) vector <math>f_{\varphi}</math> representing <math>\varphi</math> implies that <math>f_{\varphi} = g,</math> which in turn implies that <math>\overline{\varphi q} \neq 0</math> and <math>q = \frac{\|q\|^2}{\overline{\varphi q}} f_{\varphi}.</math> Thus every vector in <math>K^{\bot}</math> is a scalar multiple of <math>f_{\varphi}.</math> <math>\blacksquare</math> The formulas for the inner products follow from the [[polarization identity]]. {{collapse bottom}} === Observations === If <math>\varphi \in H^*</math> then <math display=block>\varphi \left(f_{\varphi}\right) = \left\langle f_{\varphi}, f_{\varphi} \right\rangle = \left\|f_{\varphi}\right\|^2 = \|\varphi\|^2.</math> So in particular, <math>\varphi \left(f_{\varphi}\right) \geq 0</math> is always real and furthermore, <math>\varphi \left(f_{\varphi}\right) = 0</math> if and only if <math>f_{\varphi} = 0</math> if and only if <math>\varphi = 0.</math> '''Linear functionals as affine hyperplanes''' A non-trivial continuous linear functional <math>\varphi</math> is often interpreted geometrically by identifying it with the affine hyperplane <math>A := \varphi^{-1}(1)</math> (the kernel <math>\ker\varphi = \varphi^{-1}(0)</math> is also often visualized alongside <math>A := \varphi^{-1}(1)</math> although knowing <math>A</math> is enough to reconstruct <math>\ker \varphi</math> because if <math>A = \varnothing</math> then <math>\ker \varphi = H</math> and otherwise <math>\ker \varphi = A - A</math>). In particular, the norm of <math>\varphi</math> should somehow be interpretable as the "norm of the hyperplane <math>A</math>". When <math>\varphi \neq 0</math> then the Riesz representation theorem provides such an interpretation of <math>\|\varphi\|</math> in terms of the affine hyperplane<ref group=note name="VectorSpaceStructureOnAffineHyperplanesInducedByDualSpace" /> <math>A := \varphi^{-1}(1)</math> as follows: using the notation from the theorem's statement, from <math>\|\varphi\|^2 \neq 0</math> it follows that <math>C := \varphi^{-1}\left(\|\varphi\|^2\right) = \|\varphi\|^2 \varphi^{-1}(1) = \|\varphi\|^2 A</math> and so <math>\|\varphi\| = \left\|f_{\varphi}\right\| = \inf_{c \in C} \|c\|</math> implies <math>\|\varphi\| = \inf_{a \in A} \|\varphi\|^2 \|a\|</math> and thus <math>\|\varphi\| = \frac{1}{\inf_{a \in A} \|a\|}.</math> This can also be seen by applying the [[Hilbert projection theorem]] to <math>A</math> and concluding that the global minimum point of the map <math>A \to [0, \infty)</math> defined by <math>a \mapsto \|a\|</math> is <math>\frac{f_{\varphi}}{\|\varphi\|^2} \in A.</math> The formulas <math display=block>\frac{1}{\inf_{a \in A} \|a\|} = \sup_{a \in A} \frac{1}{\|a\|}</math> provide the promised interpretation of the linear functional's norm <math>\|\varphi\|</math> entirely in terms of its associated affine hyperplane <math>A = \varphi^{-1}(1)</math> (because with this formula, knowing only the {{em|set}} <math>A</math> is enough to describe the norm of its associated linear {{em|functional}}). Defining <math>\frac{1}{\infty} := 0,</math> the [[infimum]] formula <math display=block>\|\varphi\| = \frac{1}{\inf_{a \in \varphi^{-1}(1)} \|a\|}</math> will also hold when <math>\varphi = 0.</math> When the supremum is taken in <math>\R</math> (as is typically assumed), then the supremum of the empty set is <math>\sup \varnothing = - \infty</math> but if the supremum is taken in the non-negative reals <math>[0, \infty)</math> (which is the [[Image of a function|image]]/range of the norm <math>\|\,\cdot\,\|</math> when <math>\dim H > 0</math>) then this supremum is instead <math>\sup \varnothing = 0,</math> in which case the supremum formula <math>\|\varphi\| = \sup_{a \in \varphi^{-1}(1)} \frac{1}{\|a\|}</math> will also hold when <math>\varphi = 0</math> (although the atypical equality <math>\sup \varnothing = 0</math> is usually unexpected and so risks causing confusion). === Constructions of the representing vector === Using the notation from the theorem above, several ways of constructing <math>f_{\varphi}</math> from <math>\varphi \in H^*</math> are now described. If <math>\varphi = 0</math> then <math>f_{\varphi} := 0</math>; in other words, <math display=block>f_0 = 0.</math> This special case of <math>\varphi = 0</math> is henceforth assumed to be known, which is why some of the constructions given below start by assuming <math>\varphi \neq 0.</math> '''Orthogonal complement of kernel''' If <math>\varphi \neq 0</math> then for any <math>0 \neq u \in (\ker\varphi)^{\bot},</math> <math display=block>f_{\varphi} := \frac{\overline{\varphi(u)} u}{\|u\|^2}.</math> If <math>u \in (\ker\varphi)^{\bot}</math> is a [[unit vector]] (meaning <math>\|u\| = 1</math>) then <math display=block>f_{\varphi} := \overline{\varphi(u)} u</math> (this is true even if <math>\varphi = 0</math> because in this case <math>f_{\varphi} = \overline{\varphi(u)} u = \overline{0} u = 0</math>). If <math>u</math> is a unit vector satisfying the above condition then the same is true of <math>-u,</math> which is also a unit vector in <math>(\ker\varphi)^{\bot}.</math> However, <math>\overline{\varphi(-u)} (-u) = \overline{\varphi(u)} u = f_\varphi</math> so both these vectors result in the same <math>f_{\varphi}.</math> '''Orthogonal projection onto kernel''' If <math>x \in H</math> is such that <math>\varphi(x) \neq 0</math> and if <math>x_K</math> is the [[orthogonal projection]] of <math>x</math> onto <math>\ker\varphi</math> then<ref group=proof name="FormulaOrthoProjectionKernel" /> <math display=block>f_{\varphi} = \frac{\|\varphi\|^2}{\varphi(x)} \left(x - x_K\right).</math> '''Orthonormal basis''' Given an [[orthonormal basis]] <math>\left\{e_i\right\}_{i \in I}</math> of <math>H</math> and a continuous linear functional <math>\varphi \in H^*,</math> the vector <math>f_{\varphi} \in H</math> can be constructed uniquely by <math display=block>f_\varphi = \sum_{i \in I} \overline{\varphi\left(e_i\right)} e_i</math> where all but at most countably many <math>\varphi\left(e_i\right)</math> will be equal to <math>0</math> and where the value of <math>f_{\varphi}</math> does not actually depend on choice of orthonormal basis (that is, using any other orthonormal basis for <math>H</math> will result in the same vector). If <math>y \in H</math> is written as <math>y = \sum_{i \in I} a_i e_i</math> then <math display=block>\varphi(y) = \sum_{i \in I} \varphi\left(e_i\right) a_i = \langle f_{\varphi} | y \rangle</math> and <math display=block>\left\|f_{\varphi}\right\|^2 = \varphi\left(f_{\varphi}\right) = \sum_{i \in I} \varphi\left(e_i\right) \overline{\varphi\left(e_i\right)} = \sum_{i \in I} \left|\varphi\left(e_i\right)\right|^2 = \|\varphi\|^2.</math> If the orthonormal basis <math>\left\{e_i\right\}_{i \in I} = \left\{e_i\right\}_{i=1}^{\infty}</math> is a sequence then this becomes <math display=block>f_\varphi = \overline{\varphi\left(e_1\right)} e_1 + \overline{\varphi\left(e_2\right)} e_2 + \cdots </math> and if <math>y \in H</math> is written as <math>y = \sum_{i \in I} a_i e_i = a_1 e_1 + a_2 e_2 + \cdots</math> then <math display=block>\varphi(y) = \varphi\left(e_1\right) a_1 + \varphi\left(e_2\right) a_2 + \cdots = \langle f_{\varphi} | y \rangle.</math> ==== Example in finite dimensions using matrix transformations ==== Consider the special case of <math>H = \Complex^n</math> (where <math>n > 0</math> is an integer) with the standard inner product <math display=block>\langle z \mid w \rangle := \overline{\,\vec{z}\,\,}^{\operatorname{T}} \vec{w} \qquad \text{ for all } \; w, z \in H</math> where <math>w \text{ and } z</math> are represented as [[Column matrix|column matrices]] <math>\vec{w} := \begin{bmatrix}w_1 \\ \vdots \\ w_n\end{bmatrix}</math> and <math>\vec{z} := \begin{bmatrix}z_1 \\ \vdots \\ z_n\end{bmatrix}</math> with respect to the standard orthonormal basis <math>e_1, \ldots, e_n</math> on <math>H</math> (here, <math>e_i</math> is <math>1</math> at its <math>i</math><sup>th</sup> coordinate and <math>0</math> everywhere else; as usual, <math>H^*</math> will now be associated with the [[dual basis]]) and where <math>\overline{\,\vec{z}\,}^{\operatorname{T}} := \left[\overline{z_1}, \ldots, \overline{z_n}\right]</math> denotes the [[conjugate transpose]] of <math>\vec{z}.</math> Let <math>\varphi \in H^*</math> be any linear functional and let <math>\varphi_1, \ldots, \varphi_n \in \Complex</math> be the unique scalars such that <math display=block>\varphi\left(w_1, \ldots, w_n\right) = \varphi_1 w_1 + \cdots + \varphi_n w_n \qquad \text{ for all } \; w := \left(w_1, \ldots, w_n\right) \in H,</math> where it can be shown that <math>\varphi_i = \varphi\left(e_i\right)</math> for all <math>i = 1, \ldots, n.</math> Then the Riesz representation of <math>\varphi</math> is the vector <math display=block>f_{\varphi} ~:=~ \overline{\varphi_1} e_1 + \cdots + \overline{\varphi_n} e_n ~=~ \left(\overline{\varphi_1}, \ldots, \overline{\varphi_n}\right) \in H.</math> To see why, identify every vector <math>w = \left(w_1, \ldots, w_n\right)</math> in <math>H</math> with the column matrix <math>\vec{w} := \begin{bmatrix}w_1 \\ \vdots \\ w_n\end{bmatrix}</math> so that <math>f_{\varphi}</math> is identified with <math>\vec{f_{\varphi}} := \begin{bmatrix}\overline{\varphi_1} \\ \vdots \\ \overline{\varphi_n}\end{bmatrix} = \begin{bmatrix}\overline{\varphi\left(e_1\right)} \\ \vdots \\ \overline{\varphi\left(e_n\right)}\end{bmatrix}.</math> As usual, also identify the linear functional <math>\varphi</math> with its [[transformation matrix]], which is the [[row matrix]] <math>\vec{\varphi} := \left[\varphi_1, \ldots, \varphi_n\right]</math> so that <math>\vec{f_{\varphi}} := \overline{\,\vec{\varphi}\,\,}^{\operatorname{T}}</math> and the function <math>\varphi</math> is the assignment <math>\vec{w} \mapsto \vec{\varphi} \, \vec{w},</math> where the right hand side is [[matrix multiplication]]. Then for all <math>w = \left(w_1, \ldots, w_n\right) \in H,</math> <math display=block>\varphi(w) = \varphi_1 w_1 + \cdots + \varphi_n w_n = \left[\varphi_1, \ldots, \varphi_n\right] \begin{bmatrix}w_1 \\ \vdots \\ w_n\end{bmatrix} = \overline{\begin{bmatrix}\overline{\varphi_1} \\ \vdots \\ \overline{\varphi_n}\end{bmatrix}}^{\operatorname{T}} \vec{w} = \overline{\,\vec{f_{\varphi}}\,\,}^{\operatorname{T}} \vec{w} = \left\langle \,\,f_{\varphi}\, \mid \,w\, \right\rangle, </math> which shows that <math>f_{\varphi}</math> satisfies the defining condition of the Riesz representation of <math>\varphi.</math> The bijective antilinear isometry <math>\Phi : H \to H^*</math> defined in the corollary to the Riesz representation theorem is the assignment that sends <math>z = \left(z_1, \ldots, z_n\right) \in H</math> to the linear functional <math>\Phi(z) \in H^*</math> on <math>H</math> defined by <math display=block>w = \left(w_1, \ldots, w_n\right) ~\mapsto~ \langle \,z\, \mid \,w\,\rangle = \overline{z_1} w_1 + \cdots + \overline{z_n} w_n,</math> where under the identification of vectors in <math>H</math> with column matrices and vector in <math>H^*</math> with row matrices, <math>\Phi</math> is just the assignment <math display=block>\vec{z} = \begin{bmatrix}z_1 \\ \vdots \\ z_n\end{bmatrix} ~\mapsto~ \overline{\,\vec{z}\,}^{\operatorname{T}} = \left[\overline{z_1}, \ldots, \overline{z_n}\right].</math> As described in the corollary, <math>\Phi</math>'s inverse <math>\Phi^{-1} : H^* \to H</math> is the antilinear isometry <math>\varphi \mapsto f_{\varphi},</math> which was just shown above to be: <math display=block>\varphi ~\mapsto~ f_{\varphi} ~:=~ \left(\overline{\varphi\left(e_1\right)}, \ldots, \overline{\varphi\left(e_n\right)}\right);</math> where in terms of matrices, <math>\Phi^{-1}</math> is the assignment <math display=block>\vec{\varphi} = \left[\varphi_1, \ldots, \varphi_n\right] ~\mapsto~ \overline{\,\vec{\varphi}\,\,}^{\operatorname{T}} = \begin{bmatrix}\overline{\varphi_1} \\ \vdots \\ \overline{\varphi_n}\end{bmatrix}.</math> Thus in terms of matrices, each of <math>\Phi : H \to H^*</math> and <math>\Phi^{-1} : H^* \to H</math> is just the operation of [[Conjugate transpose|conjugate transposition]] <math>\vec{v} \mapsto \overline{\,\vec{v}\,}^{\operatorname{T}}</math> (although between different spaces of matrices: if <math>H</math> is identified with the space of all column (respectively, row) matrices then <math>H^*</math> is identified with the space of all row (respectively, column matrices). This example used the standard inner product, which is the map <math>\langle z \mid w \rangle := \overline{\,\vec{z}\,\,}^{\operatorname{T}} \vec{w},</math> but if a different inner product is used, such as <math>\langle z \mid w \rangle_M := \overline{\,\vec{z}\,\,}^{\operatorname{T}} \, M \, \vec{w} \,</math> where <math>M</math> is any [[Hermitian matrix|Hermitian]] [[positive-definite matrix]], or if a different orthonormal basis is used then the transformation matrices, and thus also the above formulas, will be different. === Relationship with the associated real Hilbert space === {{See also|Complexification}} Assume that <math>H</math> is a complex Hilbert space with inner product <math>\langle \,\cdot\mid\cdot\, \rangle.</math> When the Hilbert space <math>H</math> is reinterpreted as a real Hilbert space then it will be denoted by <math>H_{\R},</math> where the (real) inner-product on <math>H_{\R}</math> is the real part of <math>H</math>'s inner product; that is: <math display=block>\langle x, y \rangle_{\R} := \operatorname{re} \langle x, y \rangle.</math> The norm on <math>H_{\R}</math> induced by <math>\langle \,\cdot\,, \,\cdot\, \rangle_{\R}</math> is equal to the original norm on <math>H</math> and the continuous dual space of <math>H_{\R}</math> is the set of all {{em|real}}-valued bounded <math>\R</math>-linear functionals on <math>H_{\R}</math> (see the article about the [[polarization identity]] for additional details about this relationship). Let <math>\psi_{\R} := \operatorname{re} \psi</math> and <math>\psi_{i} := \operatorname{im} \psi</math> denote the real and imaginary parts of a linear functional <math>\psi,</math> so that <math>\psi = \operatorname{re} \psi + i \operatorname{im} \psi = \psi_{\R} + i \psi_{i}.</math> The formula [[Real and imaginary parts of a linear functional|expressing a linear functional]] in terms of its real part is <math display=block>\psi(h) = \psi_{\R}(h) - i \psi_{\R} (i h) \quad \text{ for } h \in H,</math> where <math>\psi_{i}(h) = - i \psi_{\R} (i h)</math> for all <math>h \in H.</math> It follows that <math>\ker\psi_{\R} = \psi^{-1}(i \R),</math> and that <math>\psi = 0</math> if and only if <math>\psi_{\R} = 0.</math> It can also be shown that <math>\|\psi\| = \left\|\psi_{\R}\right\| = \left\|\psi_i\right\|</math> where <math>\left\|\psi_{\R}\right\| := \sup_{\|h\| \leq 1} \left|\psi_{\R}(h)\right|</math> and <math>\left\|\psi_i\right\| := \sup_{\|h\| \leq 1} \left|\psi_i(h)\right|</math> are the usual [[operator norm]]s. In particular, a linear functional <math>\psi</math> is bounded if and only if its real part <math>\psi_{\R}</math> is bounded. '''Representing a functional and its real part''' The Riesz representation of a continuous linear function <math>\varphi</math> on a complex Hilbert space is equal to the Riesz representation of its real part <math>\operatorname{re} \varphi</math> on its associated real Hilbert space. Explicitly, let <math>\varphi \in H^*</math> and as above, let <math>f_\varphi \in H</math> be the Riesz representation of <math>\varphi</math> obtained in <math>(H, \langle, \cdot, \cdot \rangle),</math> so it is the unique vector that satisfies <math>\varphi(x) = \left\langle f_{\varphi} \mid x \right\rangle</math> for all <math>x \in H.</math> The real part of <math>\varphi</math> is a continuous real linear functional on <math>H_{\R}</math> and so the Riesz representation theorem may be applied to <math>\varphi_{\R} := \operatorname{re} \varphi</math> and the associated real Hilbert space <math>\left(H_{\R}, \langle, \cdot, \cdot \rangle_{\R}\right)</math> to produce its Riesz representation, which will be denoted by <math>f_{\varphi_{\R}}.</math> That is, <math>f_{\varphi_{\R}}</math> is the unique vector in <math>H_{\R}</math> that satisfies <math>\varphi_{\R}(x) = \left\langle f_{\varphi_{\R}} \mid x \right\rangle_{\R}</math> for all <math>x \in H.</math> The conclusion is <math>f_{\varphi_{\R}} = f_{\varphi}.</math> This follows from the main theorem because <math>\ker\varphi_{\R} = \varphi^{-1}(i \R)</math> and if <math>x \in H</math> then <math display=block>\left\langle f_\varphi \mid x \right\rangle_{\R} = \operatorname{re} \left\langle f_\varphi \mid x \right\rangle = \operatorname{re} \varphi(x) = \varphi_{\R}(x)</math> and consequently, if <math>m \in \ker\varphi_{\R}</math> then <math>\left\langle f_{\varphi}\mid m \right\rangle_{\R} = 0,</math> which shows that <math>f_{\varphi} \in (\ker\varphi_{\R})^{\perp_{\R}}.</math> Moreover, <math>\varphi(f_\varphi) = \|\varphi\|^2</math> being a real number implies that <math>\varphi_{\R} (f_\varphi) = \operatorname{re} \varphi(f_\varphi) = \|\varphi\|^2.</math> In other words, in the theorem and constructions above, if <math>H</math> is replaced with its real Hilbert space counterpart <math>H_{\R}</math> and if <math>\varphi</math> is replaced with <math>\operatorname{re} \varphi</math> then <math>f_{\varphi} = f_{\operatorname{re} \varphi}.</math> This means that vector <math>f_{\varphi}</math> obtained by using <math>\left(H_{\R}, \langle, \cdot, \cdot \rangle_{\R}\right)</math> and the real linear functional <math>\operatorname{re} \varphi</math> is the equal to the vector obtained by using the origin complex Hilbert space <math>\left(H, \left\langle, \cdot, \cdot \right\rangle\right)</math> and original complex linear functional <math>\varphi</math> (with identical norm values as well). Furthermore, if <math>\varphi \neq 0</math> then <math>f_{\varphi}</math> is perpendicular to <math>\ker\varphi_{\R}</math> with respect to <math>\langle \cdot, \cdot \rangle_{\R}</math> where the kernel of <math>\varphi</math> is be a ''proper'' subspace of the kernel of its real part <math>\varphi_{\R}.</math> Assume now that <math>\varphi \neq 0.</math> Then <math>f_{\varphi} \not\in \ker\varphi_{\R}</math> because <math>\varphi_{\R}\left(f_{\varphi}\right) = \varphi\left(f_{\varphi}\right) = \|\varphi\|^2 \neq 0</math> and <math>\ker\varphi</math> is a proper subset of <math>\ker\varphi_{\R}.</math> The vector subspace <math>\ker \varphi</math> has real codimension <math>1</math> in <math>\ker\varphi_{\R},</math> while <math>\ker\varphi_{\R}</math> has {{em|real}} codimension <math>1</math> in <math>H_{\R},</math> and <math>\left\langle f_{\varphi}, \ker\varphi_{\R} \right\rangle_{\R} = 0.</math> That is, <math>f_{\varphi}</math> is perpendicular to <math>\ker\varphi_{\R}</math> with respect to <math>\langle \cdot, \cdot \rangle_{\R}.</math> === Canonical injections into the dual and anti-dual === '''Induced linear map into anti-dual''' The map defined by placing <math>y</math> into the {{em|linear}} coordinate of the inner product and letting the variable <math>h \in H</math> vary over the {{em|antilinear}} coordinate results in an [[Antilinear map|{{em|antilinear}} functional]]: <math display=block>\langle \,\cdot \mid y\, \rangle = \langle \,y, \cdot\, \rangle : H \to \mathbb{F} \quad \text{ defined by } \quad h \mapsto \langle \,h \mid y\, \rangle = \langle \,y, h\, \rangle.</math> This map is an element of <math>\overline{H}^*,</math> which is the continuous [[anti-dual space]] of <math>H.</math> The {{em|canonical map from <math>H</math> into its anti-dual}} <math>\overline{H}^*</math>{{sfn|Trèves|2006|pp=112–123}} is the [[Linear operator|{{em|linear}} operator]] <math display=block>\begin{alignat}{4} \operatorname{In}_H^{\overline{H}^*} :\;&& H &&\;\to \;& \overline{H}^* \\[0.3ex] && y &&\;\mapsto\;& \langle \,\cdot \mid y\, \rangle = \langle \,y, \cdot\, \rangle \\[0.3ex] \end{alignat}</math> which is also an [[Injective map|injective]] [[isometry]].{{sfn|Trèves|2006|pp=112–123}} The [[Fundamental theorem of Hilbert spaces]], which is related to Riesz representation theorem, states that this map is surjective (and thus [[Bijective map|bijective]]). Consequently, every antilinear functional on <math>H</math> can be written (uniquely) in this form.{{sfn|Trèves|2006|pp=112–123}} If <math>\operatorname{Cong} : H^* \to \overline{H}^*</math> is the canonical [[Antilinear map|{{em|anti}}linear]] [[Bijective map|bijective]] [[isometry]] <math>f \mapsto \overline{f}</math> that was defined above, then the following equality holds: <math display=block>\operatorname{Cong} ~\circ~ \operatorname{In}_H^{H^*} ~=~ \operatorname{In}_H^{\overline{H}^*}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)