Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Root test
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Root tests hierarchy == Root tests hierarchy<ref>{{cite journal|url=http://files.ele-math.com/articles/jca-19-09.pdf |last1=Abramov |first1=Vyacheslav M. |date=2022 |title=Necessary and sufficient conditions for the convergence of positive series |journal=Journal of Classical Analysis |volume=19 |issue=2 |pages=117--125 |doi=10.7153/jca-2022-19-09 |arxiv=2104.01702 }}</ref><ref>{{cite journal|url=http://www.m-hikari.com/ijma/ijma-2012/ijma-37-40-2012/bourchteinIJMA37-40-2012.pdf |last1=Bourchtein |first1=Ludmila |last2=Bourchtein |first2=Andrei |last3=Nornberg |first3=Gabrielle |last4=Venzke |first4=Cristiane |date=2012 |title=A hierarchy of convergence tests related to Cauchy's test |journal=International Journal of Mathematical Analysis |volume=6 |issue=37--40 |pages=1847--1869 }}</ref> is built similarly to the [[ ratio test | ratio tests ]] hierarchy (see Section 4.1 of [[ ratio test]], and more specifically Subsection 4.1.4 there). For a series <math>\sum_{n=1}^\infty a_n</math> with positive terms we have the following tests for convergence/divergence. Let <math>K\geq1</math> be an integer, and let <math>\ln_{(K)}(x)</math> denote the <math>K</math>th [[iteration|iterate]] of [[natural logarithm]], i.e. <math>\ln_{(1)}(x)=\ln (x)</math> and for any <math>2\leq k\leq K</math>, <math>\ln_{(k)}(x)=\ln_{(k-1)}(\ln (x))</math>. Suppose that <math>\sqrt[-n]{a_n}</math>, when <math>n</math> is large, can be presented in the form :<math>\sqrt[-n]{a_n}=1+\frac{1}{n}+\frac{1}{n}\sum_{i=1}^{K-1}\frac{1}{\prod_{k=1}^i\ln_{(k)}(n)}+\frac{\rho_n}{n\prod_{k=1}^K\ln_{(k)}(n)}.</math> (The empty sum is assumed to be 0.) * The series converges, if <math>\liminf_{n\to\infty}\rho_n>1</math> * The series diverges, if <math>\limsup_{n\to\infty}\rho_n<1</math> * Otherwise, the test is inconclusive. === Proof === Since <math>\sqrt[-n]{a_n}=\mathrm{e}^{-\frac{1}{n}\ln a_n}</math>, then we have :<math>\mathrm{e}^{-\frac{1}{n}\ln a_n}=1+\frac{1}{n}+\frac{1}{n}\sum_{i=1}^{K-1}\frac{1}{\prod_{k=1}^i\ln_{(k)}(n)}+\frac{\rho_n}{n\prod_{k=1}^K\ln_{(k)}(n)}.</math> From this, :<math> \ln a_n=-n\ln\left(1+\frac{1}{n}+\frac{1}{n}\sum_{i=1}^{K-1}\frac{1}{\prod_{k=1}^i\ln_{(k)}(n)}+\frac{\rho_n}{n\prod_{k=1}^K\ln_{(k)}(n)}\right).</math> From [[Taylor Series| Taylor's expansion]] applied to the right-hand side, we obtain: :<math> \ln a_n=-1-\sum_{i=1}^{K-1}\frac{1}{\prod_{k=1}^i\ln_{(k)}(n)}-\frac{\rho_n}{\prod_{k=1}^K\ln_{(k)}(n)}+O\left(\frac{1}{n}\right).</math> Hence, :<math>a_n=\begin{cases}\mathrm{e}^{-1+O(1/n)}\frac{1}{(n\prod_{k=1}^{K-2}\ln_{(k)}n)\ln^{\rho_n}_{(K-1)}n}, &K\geq2,\\ \mathrm{e}^{-1+O(1/n)}\frac{1}{n^{\rho_n}}, &K=1. \end{cases} </math> (The empty product is set to 1.) The final result follows from the [[integral test for convergence]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)