Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Schur complement
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Conditions for positive definiteness and semi-definiteness == Let ''X'' be a symmetric matrix of real numbers given by <math display="block">X = \left[\begin{matrix} A & B \\ B^\mathrm{T} & C\end{matrix}\right].</math> Then * If ''A'' is invertible, then ''X'' is positive definite if and only if ''A'' and its complement ''X/A'' are both positive definite:<ref name="Zhang 2005"></ref>{{rp|34}} :<math display="block">X \succ 0 \Leftrightarrow A \succ 0, X/A = C - B^\mathrm{T} A^{-1} B \succ 0.</math> * If ''C'' is invertible, then ''X'' is positive definite if and only if ''C'' and its complement ''X/C'' are both positive definite: :<math display="block">X \succ 0 \Leftrightarrow C \succ 0, X/C = A - B C^{-1} B^\mathrm{T} \succ 0.</math> * If ''A'' is positive definite, then ''X'' is positive semi-definite if and only if the complement ''X/A'' is positive semi-definite:<ref name="Zhang 2005"/>{{rp|34}} :<math display="block">\text{If } A \succ 0, \text{ then } X \succeq 0 \Leftrightarrow X/A = C - B^\mathrm{T} A^{-1} B \succeq 0.</math> * If ''C'' is positive definite, then ''X'' is positive semi-definite if and only if the complement ''X/C'' is positive semi-definite: :<math display="block">\text{If } C \succ 0,\text{ then } X \succeq 0 \Leftrightarrow X/C = A - B C^{-1} B^\mathrm{T} \succeq 0.</math> The first and third statements can be derived<ref name="Boyd 2004">Boyd, S. and Vandenberghe, L. (2004), "Convex Optimization", Cambridge University Press (Appendix A.5.5)</ref> by considering the minimizer of the quantity <math display="block">u^\mathrm{T} A u + 2 v^\mathrm{T} B^\mathrm{T} u + v^\mathrm{T} C v, \,</math> as a function of ''v'' (for fixed ''u''). Furthermore, since <math display="block"> \left[\begin{matrix} A & B \\ B^\mathrm{T} & C \end{matrix}\right] \succ 0 \Longleftrightarrow \left[\begin{matrix} C & B^\mathrm{T} \\ B & A \end{matrix}\right] \succ 0 </math> and similarly for positive semi-definite matrices, the second (respectively fourth) statement is immediate from the first (resp. third) statement. There is also a sufficient and necessary condition for the positive semi-definiteness of ''X'' in terms of a generalized Schur complement.<ref name="Zhang 2005" /> Precisely, * <math>X \succeq 0 \Leftrightarrow A \succeq 0, C - B^\mathrm{T} A^g B \succeq 0, \left(I - A A^{g}\right)B = 0 \, </math> and * <math>X \succeq 0 \Leftrightarrow C \succeq 0, A - B C^g B^\mathrm{T} \succeq 0, \left(I - C C^g\right)B^\mathrm{T} = 0, </math> where <math>A^g</math> denotes a [[generalized inverse]] of <math>A</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)