Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Selection (evolutionary algorithm)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Linear rank selection ==== Linear ranking, which goes back to Baker,<ref>{{Citation |last=Baker |first=James E. |title=Adaptive Selection Methods for Genetic Algorithms |date=1985 |work=Conf. Proc. of the 1st Int. Conf. on Genetic Algorithms and Their Applications (ICGA) |pages=101–111 |editor-last=Grefenstette |editor-first=John J. |place=Hillsdale, New. Jersey |publisher=L. Erlbaum Associates |isbn=0-8058-0426-9 }}</ref><ref>{{Citation |last=Baker |first=James E. |title=Reducing Bias and Inefficiency in the Selection Algorithm |date=1987 |work=Conf. Proc. of the 2nd Int. Conf. on Genetic Algorithms and Their Applications (ICGA) |pages=14–21 |editor-last=Grefenstette |editor-first=John J. |place=Hillsdale, New. Jersey |publisher=L. Erlbaum Associates |isbn=0-8058-0158-8 }}</ref> is often used.<ref name=":0" /><ref name=":1" /><ref>{{Citation |last1=Hoffmeister |first1=Frank |title=Genetic Algorithms and evolution strategies: Similarities and differences |date=1991 |work=Parallel Problem Solving from Nature |volume=496 |pages=455–469 |editor-last=Schwefel |editor-first=Hans-Paul |url= |access-date= |place=Berlin, Heidelberg |publisher=Springer-Verlag |language=en |doi=10.1007/bfb0029787 |isbn=978-3-540-54148-6 |last2=Bäck |first2=Thomas |editor2-last=Männer |editor2-first=Reinhard}}</ref> It allows the selection pressure to be set by the parameter <math>sp </math>, which can take values between 1.0 (no selection pressure) and 2.0 (high selection pressure). The probability <math>P </math> for <math>n</math> rank positions <math>R_i </math> is obtained as follows: :<math>P(R_i) =\frac{1}{n}\Bigl(sp-(2sp-2)\frac{i-1}{n-1}\Bigr) \quad \quad 1\leq i \leq n ,\quad 1 \leq sp \leq 2 \quad \mathsf{with} \quad P(R_i) \ge 0, \quad \sum_{i=1}^nP(R_i)=1 </math> Another definition for the probability <math>P</math> for rank positions <math>i</math> is:<ref name=selist>{{cite journal |last1=Jannoud |first1=Ismael |last2=Jaradat |first2=Yousef |last3=Masoud |first3=Mohammad Z. |last4=Manasrah |first4=Ahmad |last5=Alia |first5=Mohammad |title=The Role of Genetic Algorithm Selection Operators in Extending WSN Stability Period: A Comparative Study |journal=Electronics |date=22 December 2021 |volume=11 |issue=1 |pages=28 |doi=10.3390/electronics11010028|doi-access=free }}</ref> :<math>P(i) =\frac{2*(n-i+1)}{n*(n+1)}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)