Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Set-theoretic limit
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== * Let <math>A_n = \left(- \tfrac{1}{n}, 1 - \tfrac{1}{n}\right].</math> Then <math display=block>\liminf_{n \to \infty} A_n = \bigcup_n \bigcap_{j \geq n} \left(-\tfrac{1}{j}, 1 - \tfrac{1}{j} \right] = \bigcup_n \left[0, 1 - \tfrac{1}{n}\right] = [0, 1)</math> and <math display=block>\limsup_{n \to \infty} A_n = \bigcap_n \bigcup_{j \geq n}\left(-\tfrac{1}{j}, 1 - \tfrac{1}{j}\right] = \bigcap_n \left(- \tfrac{1}{n}, 1\right) = [0, 1)</math> so <math>\lim_{n \to \infty} A_n = [0, 1)</math> exists. * Change the previous example to <math>A_n = \left(\tfrac{(-1)^n}{n}, 1 - \tfrac{(-1)^n}{n}\right].</math> Then <math display=block>\liminf_{n \to \infty} A_n = \bigcup_n \bigcap_{j \geq n} \left(\tfrac{(-1)^j}{j}, 1-\tfrac{(-1)^j}{j}\right] = \bigcup_n \left(\tfrac{1}{2n}, 1 - \tfrac{1}{2n}\right] = (0, 1)</math> and <math display=block>\limsup_{n \to \infty} A_n = \bigcap_n \bigcup_{j \geq n} \left(\tfrac{(-1)^j}{j}, 1 - \tfrac{(-1)^j}{j}\right] = \bigcap_n \left(-\tfrac{1}{2n-1}, 1 + \tfrac{1}{2n-1}\right] = [0, 1],</math> so <math>\lim_{n \to \infty} A_n</math> does not exist, despite the fact that the left and right endpoints of the [[Interval (mathematics)|intervals]] converge to 0 and 1, respectively. * Let <math>A_n = \left\{ 0, \tfrac{1}{n}, \tfrac{2}{n}, \ldots, \tfrac{n - 1}{n}, 1\right\}.</math> Then <math display=block>\bigcup_{j \geq n} A_j = \Q\cap[0,1]</math> is the set of all [[rational number]]s between 0 and 1 (inclusive), since even for <math>j < n</math> and <math>0 \leq k \leq j,</math> <math>\tfrac{k}{j} = \tfrac{nk}{nj}</math> is an element of the above. Therefore, <math display=block>\limsup_{n \to \infty} A_n = \Q \cap [0, 1].</math> On the other hand, <math display=block>\bigcap_{j \geq n} A_j = \{0, 1\},</math> which implies <math display=block>\liminf_{n \to \infty} A_n = \{0,1\}.</math> In this case, the sequence <math>A_1, A_2, \ldots</math> does not have a limit. Note that <math>\lim_{n \to \infty} A_n</math> is not the set of accumulation points, which would be the entire interval <math>[0, 1]</math> (according to the usual [[Euclidean distance|Euclidean metric]]).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)