Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Shape optimization
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Iterative methods using shape gradients === Consider a smooth velocity field <math>V</math> and the family of transformations <math>T_s</math> of the initial domain <math>\Omega_0</math> under the velocity field <math>V</math>: :<math>x(0) = x_0 \in \Omega_0, \quad x'(s) = V(x(s)), \quad T_s(x_0) = x(s), \quad s \geq 0 </math>, and denote :<math>\Omega_0 \mapsto T_s(\Omega_0) = \Omega_s.</math> Then the Gâteaux or shape derivative of <math>\mathcal{F}(\Omega)</math> at <math>\Omega_0</math> with respect to the shape is the limit of :<math>d\mathcal{F}(\Omega_0;V) = \lim_{s \to 0}\frac{\mathcal{F}(\Omega_s) - \mathcal{F}(\Omega_0)}{s}</math> if this limit exists. If in addition the derivative is linear with respect to <math>V</math>, there is a unique element of <math>\nabla \mathcal{F} \in L^2(\partial \Omega_0)</math> and :<math>d\mathcal{F}(\Omega_0;V) = \langle \nabla \mathcal{F}, V \rangle_{\partial \Omega_0}</math> where <math>\nabla \mathcal{F}</math> is called the shape gradient. This gives a natural idea of [[gradient descent]], where the boundary <math>\partial \Omega</math> is evolved in the direction of negative shape gradient in order to reduce the value of the cost functional. Higher order derivatives can be similarly defined, leading to Newtonlike methods. Typically, gradient descent is preferred, even if requires a large number of iterations, because, it can be hard to compute the second-order derivative (that is, the [[Hessian matrix|Hessian]]) of the objective functional <math>\mathcal{F}</math>. If the shape optimization problem has constraints, that is, the functional <math>\mathcal{G}</math> is present, one has to find ways to convert the constrained problem into an unconstrained one. Sometimes ideas based on [[Lagrange multipliers]], like the [[adjoint state method]], can work.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)