Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Short-time Fourier transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Inverse STFT == The STFT is [[invertible function|invertible]], that is, the original signal can be recovered from the transform by the inverse STFT. The most widely accepted way of inverting the STFT is by using the [[Overlap–add method|overlap-add (OLA) method]], which also allows for modifications to the STFT complex spectrum. This makes for a versatile signal processing method,<ref>{{cite journal | author = Jont B. Allen |date=June 1977 | title = Short Time Spectral Analysis, Synthesis, and Modification by Discrete Fourier Transform | journal = IEEE Transactions on Acoustics, Speech, and Signal Processing | volume = ASSP-25 | number = 3 | pages = 235–238 |doi=10.1109/TASSP.1977.1162950 }}</ref> referred to as the ''overlap and add with modifications'' method. === Continuous-time STFT === Given the width and definition of the window function ''w''(''t''), we initially require the area of the window function to be scaled so that :<math> \int_{-\infty}^{\infty} w(\tau) \, d\tau = 1.</math> It easily follows that :<math> \int_{-\infty}^{\infty} w(t-\tau) \, d\tau = 1 \quad \forall \ t </math> and :<math> x(t) = x(t) \int_{-\infty}^{\infty} w(t-\tau) \, d\tau = \int_{-\infty}^{\infty} x(t) w(t-\tau) \, d\tau. </math> The continuous Fourier transform is :<math> X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-i \omega t} \, dt. </math> Substituting ''x''(''t'') from above: :<math> X(\omega) = \int_{-\infty}^{\infty} \left[ \int_{-\infty}^{\infty} x(t) w(t-\tau) \, d\tau \right] \, e^{-i \omega t} \, dt </math> :::<math> = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(t) w(t-\tau) \, e^{-i \omega t} \, d\tau \, dt. </math> Swapping order of integration: :<math> X(\omega) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(t) w(t-\tau) \, e^{-i \omega t} \, dt \, d\tau </math> :::<math> = \int_{-\infty}^{\infty} \left[ \int_{-\infty}^{\infty} x(t) w(t-\tau) \, e^{-i \omega t} \, dt \right] \, d\tau </math> :::<math> = \int_{-\infty}^{\infty} X(\tau, \omega) \, d\tau. </math> So the Fourier transform can be seen as a sort of phase coherent sum of all of the STFTs of ''x''(''t''). Since the inverse Fourier transform is :<math> x(t) = \frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{+i \omega t} \, d\omega, </math> then ''x''(''t'') can be recovered from ''X''(τ,ω) as :<math> x(t) = \frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} X(\tau, \omega) e^{+i \omega t} \, d\tau \, d\omega. </math> or :<math> x(t) = \int_{-\infty}^{\infty} \left[ \frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\tau, \omega) e^{+i \omega t} \, d\omega \right] \, d\tau. </math> It can be seen, comparing to above that windowed "grain" or "wavelet" of ''x''(''t'') is :<math> x(t) w(t-\tau) = \frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\tau, \omega) e^{+i \omega t} \, d\omega. </math> the inverse Fourier transform of ''X''(τ,ω) for τ fixed. An alternative definition that is valid only in the vicinity of τ, the inverse transform is: :<math>x(t) = \frac{1}{w(t-\tau)}\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\tau, \omega) e^{+i \omega t} \, d\omega.</math> In general, the window function <math>w(t)</math> has the following properties: :(a) even symmetry: <math>w(t) = w(-t)</math>;<br /> :(b) non-increasing (for positive time): <math>w(t) \geq w(s)</math> if <math>|t| \leq |s|</math>;<br /> :(c) compact support: <math>w(t)</math> is equal to zero when |t| is large.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)