Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Simplex algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Pivot operations== The geometrical operation of moving from a basic feasible solution to an adjacent basic feasible solution is implemented as a ''pivot operation''. First, a nonzero ''pivot element'' is selected in a nonbasic column. The row containing this element is [[Elementary matrix#Row-multiplying transformations|multiplied]] by its reciprocal to change this element to 1, and then multiples of the row are added to the other rows to change the other entries in the column to 0. The result is that, if the pivot element is in a row ''r'', then the column becomes the ''r''-th column of the identity matrix. The variable for this column is now a basic variable, replacing the variable which corresponded to the ''r''-th column of the identity matrix before the operation. In effect, the variable corresponding to the pivot column enters the set of basic variables and is called the ''entering variable'', and the variable being replaced leaves the set of basic variables and is called the ''leaving variable''. The tableau is still in canonical form but with the set of basic variables changed by one element.<ref name="DantzigThapa1"/><ref name="NeringTucker"/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)