Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Sinc function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Higher dimensions == The product of 1-D sinc functions readily provides a [[multivariable calculus|multivariate]] sinc function for the square Cartesian grid ([[Lattice graph|lattice]]): {{math|sinc<sub>C</sub>(''x'', ''y'') {{=}} sinc(''x'') sinc(''y'')}}, whose [[Fourier transform]] is the [[indicator function]] of a square in the frequency space (i.e., the brick wall defined in 2-D space). The sinc function for a non-Cartesian [[Lattice (group)|lattice]] (e.g., [[hexagonal lattice]]) is a function whose [[Fourier transform]] is the [[indicator function]] of the [[Brillouin zone]] of that lattice. For example, the sinc function for the hexagonal lattice is a function whose [[Fourier transform]] is the [[indicator function]] of the unit hexagon in the frequency space. For a non-Cartesian lattice this function can not be obtained by a simple tensor product. However, the explicit formula for the sinc function for the [[hexagonal lattice|hexagonal]], [[body-centered cubic]], [[face-centered cubic]] and other higher-dimensional lattices can be explicitly derived<ref name="multiD">{{cite journal |last1=Ye |first1= W. |last2=Entezari |first2= A. |title=A Geometric Construction of Multivariate Sinc Functions |journal=IEEE Transactions on Image Processing |volume=21 |issue=6 |pages=2969β2979 |date=June 2012 |doi=10.1109/TIP.2011.2162421 |pmid=21775264 |bibcode=2012ITIP...21.2969Y|s2cid= 15313688 }}</ref> using the geometric properties of Brillouin zones and their connection to [[zonohedron|zonotopes]]. For example, a [[hexagonal lattice]] can be generated by the (integer) [[linear span]] of the vectors <math display="block"> \mathbf{u}_1 = \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} \quad \text{and} \quad \mathbf{u}_2 = \begin{bmatrix} \frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{bmatrix}. </math> Denoting <math display="block"> \boldsymbol{\xi}_1 = \tfrac{2}{3} \mathbf{u}_1, \quad \boldsymbol{\xi}_2 = \tfrac{2}{3} \mathbf{u}_2, \quad \boldsymbol{\xi}_3 = -\tfrac{2}{3} (\mathbf{u}_1 + \mathbf{u}_2), \quad \mathbf{x} = \begin{bmatrix} x \\ y\end{bmatrix}, </math> one can derive<ref name="multiD" /> the sinc function for this hexagonal lattice as <math display="block">\begin{align} \operatorname{sinc}_\text{H}(\mathbf{x}) = \tfrac{1}{3} \big( & \cos\left(\pi\boldsymbol{\xi}_1\cdot\mathbf{x}\right) \operatorname{sinc}\left(\boldsymbol{\xi}_2\cdot\mathbf{x}\right) \operatorname{sinc}\left(\boldsymbol{\xi}_3\cdot\mathbf{x}\right) \\ & {} + \cos\left(\pi\boldsymbol{\xi}_2\cdot\mathbf{x}\right) \operatorname{sinc}\left(\boldsymbol{\xi}_3\cdot\mathbf{x}\right) \operatorname{sinc}\left(\boldsymbol{\xi}_1\cdot\mathbf{x}\right) \\ & {} + \cos\left(\pi\boldsymbol{\xi}_3\cdot\mathbf{x}\right) \operatorname{sinc}\left(\boldsymbol{\xi}_1\cdot\mathbf{x}\right) \operatorname{sinc}\left(\boldsymbol{\xi}_2\cdot\mathbf{x}\right) \big). \end{align}</math> This construction can be used to design [[Lanczos window]] for general multidimensional lattices.<ref name="multiD" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)