Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Sobol sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Implementation and availability == Good initialisation numbers for different numbers of dimensions are provided by several authors. For example, Sobol’ provides initialisation numbers for dimensions up to 51.<ref name=SobLev76>Sobol’, I.M. and Levitan, Y.L. (1976). "The production of points uniformly distributed in a multidimensional cube" ''Tech. Rep. 40, Institute of Applied Mathematics, USSR Academy of Sciences'' (in Russian).</ref> The same set of initialisation numbers is used by Bratley and Fox.<ref name=BF88>Bratley, P. and Fox, B. L. (1988), "Algorithm 659: Implementing Sobol’ quasirandom sequence generator". ''ACM Trans. Math. Software'' '''14''': 88–100.</ref> Initialisation numbers for high dimensions are available on Joe and Kuo.<ref name=JK>{{cite web|url=http://web.maths.unsw.edu.au/~fkuo/sobol/ |title=Sobol' sequence generator |publisher=[[University of New South Wales]] |date=2010-09-16 |accessdate=2013-12-20}}</ref> [[Peter Jaeckel|Peter Jäckel]] provides initialisation numbers up to dimension 32 in his book "[[Monte Carlo methods in finance]]".<ref name=Jackel>Jäckel, P. (2002) "Monte Carlo methods in finance". New York: [[John Wiley and Sons]]. ({{ISBN|0-471-49741-X}}.)</ref> Other implementations are available as C, Fortran 77, or Fortran 90 routines in the [[Numerical Recipes]] collection of software.<ref name=NumRec>Press, W.H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992) "Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd ed." ''Cambridge University Press, Cambridge, U.K.''</ref> A [[Free and open-source software|free/open-source]] implementation in up to 1111 dimensions, based on the Joe and Kuo initialisation numbers, is available in C,<ref>[https://github.com/stevengj/nlopt/blob/master/src/util/sobolseq.c C implementation of the Sobol’ sequence] in the [http://ab-initio.mit.edu/nlopt NLopt library] (2007).</ref> and up to 21201 dimensions in Python<ref>{{Cite web|url=https://scipy.github.io/devdocs/reference/generated/scipy.stats.qmc.Sobol.html|title=SciPy API Reference: scipy.stats.qmc.Sobol}}</ref><ref>{{Cite web|url=https://pyscenarios.readthedocs.io|title=pyscenarios: Python Scenario Generator|last=Imperiale|first=G.}}</ref> and [[Julia (programming language)|Julia]].<ref>[https://github.com/stevengj/Sobol.jl Sobol.jl] package: Julia implementation of the Sobol’ sequence.</ref> A different free/open-source implementation in up to 1111 dimensions is available for [[C++]], [[Fortran 90]], [[Matlab]], and [[Python (programming language)|Python]].<ref>[http://people.sc.fsu.edu/~jburkardt/cpp_src/sobol/sobol.html The Sobol’ Quasirandom Sequence], code for C++/Fortran 90/Matlab/Python by J. Burkardt</ref> Commercial Sobol’ sequence generators are available within, for example, the [[NAG Numerical Libraries|NAG Library]].<ref name=NAG>{{cite web|url=http://www.nag.co.uk/ |title=Numerical Algorithms Group |publisher=Nag.co.uk |date=2013-11-28 |accessdate=2013-12-20}}</ref> BRODA Ltd.<ref name=BRODA_info_article>{{cite journal |author=I. Sobol’, D. Asotsky, A. Kreinin, S. Kucherenko |title=Construction and Comparison of High-Dimensional Sobol' Generators |url=http://www.broda.co.uk/doc/HD_SobolGenerator.pdf |journal=Wilmott Journal |year=2011 |volume=Nov |issue=56 | pages=64–79|doi=10.1002/wilm.10056 }}</ref><ref name=BRODA>{{cite web|url=http://www.broda.co.uk |title=Broda |publisher=Broda |date=2024-01-23 |accessdate=2024-01-23}}</ref> provides Sobol' and scrambled Sobol' sequences generators with additional unifomity properties A and A' up to a maximum dimension 131072. These generators were co-developed with Prof. I. Sobol'. MATLAB <ref>[https://www.mathworks.com/help/stats/sobolset.html sobolset reference page]. Retrieved 2017-07-24.</ref> contains Sobol' sequences generators up to dimension 1111 as part of its Statistics Toolbox.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)