Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spectral radius
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Upper bounds== ===Upper bounds on the spectral radius of a matrix=== The following proposition gives simple yet useful upper bounds on the spectral radius of a matrix. '''Proposition.''' Let {{math|''A'' β '''C'''<sup>''n''Γ''n''</sup>}} with spectral radius {{math|''Ο''(''A'')}} and a [[sub-multiplicative norm|sub-multiplicative matrix norm]] {{math|{{!!}}β {{!!}}}}. Then for each integer <math>k \geqslant 1</math>: ::<math>\rho(A)\leq \|A^k\|^{\frac{1}{k}}.</math> '''Proof''' Let {{math|('''v''', ''Ξ»'')}} be an [[eigenvector]]-[[eigenvalue]] pair for a matrix ''A''. By the sub-multiplicativity of the matrix norm, we get: :<math>|\lambda|^k\|\mathbf{v}\| = \|\lambda^k \mathbf{v}\| = \|A^k \mathbf{v}\| \leq \|A^k\|\cdot\|\mathbf{v}\|.</math> Since {{math|'''v''' β 0}}, we have :<math>|\lambda|^k \leq \|A^k\|</math> and therefore :<math>\rho(A)\leq \|A^k\|^{\frac{1}{k}}.</math> concluding the proof. === Upper bounds for spectral radius of a graph === There are many upper bounds for the spectral radius of a graph in terms of its number ''n'' of vertices and its number ''m'' of edges. For instance, if :<math>\frac{(k-2)(k-3)}{2} \leq m-n \leq \frac{k(k-3)}{2}</math> where <math>3 \le k \le n</math> is an integer, then<ref>{{Cite journal|last1=Guo|first1=Ji-Ming|last2=Wang|first2=Zhi-Wen|last3=Li|first3=Xin|date=2019|title=Sharp upper bounds of the spectral radius of a graph|journal=Discrete Mathematics|language=en|volume=342|issue=9|pages=2559β2563|doi=10.1016/j.disc.2019.05.017|s2cid=198169497|doi-access=free}}</ref> :<math>\rho(G) \leq \sqrt{2 m-n-k+\frac{5}{2}+\sqrt{2 m-2 n+\frac{9}{4}}}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)