Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spectral theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Compact self-adjoint operators == {{see also|Compact operator on Hilbert space#Spectral theorem}} In the more general setting of Hilbert spaces, which may have an infinite dimension, the statement of the spectral theorem for [[compact operator|compact]] [[self-adjoint operators]] is virtually the same as in the finite-dimensional case. {{math theorem | math_statement =Suppose {{math|''A''}} is a compact self-adjoint operator on a (real or complex) Hilbert space {{math|''V''}}. Then there is an [[orthonormal basis]] of {{math|''V''}} consisting of eigenvectors of {{math|''A''}}. Each eigenvalue is real.}} As for Hermitian matrices, the key point is to prove the existence of at least one nonzero eigenvector. One cannot rely on determinants to show existence of eigenvalues, but one can use a maximization argument analogous to the variational characterization of eigenvalues. If the compactness assumption is removed, then it is ''not'' true that every self-adjoint operator has eigenvectors. For example, the multiplication operator <math>M_{x}</math> on <math>L^2([0,1])</math> which takes each <math>\psi(x) \in L^2([0,1])</math> to <math>x\psi(x)</math> is bounded and self-adjoint, but has no eigenvectors. However, its spectrum, suitably defined, is still equal to <math>[0,1]</math>, see [[Spectrum_(functional_analysis)#Spectrum_of_a_bounded_operator| spectrum of bounded operator]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)