Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Square-free integer
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Distribution== Let ''Q''(''x'') denote the number of square-free integers between 1 and ''x'' ({{OEIS2C|A013928}} shifting index by 1). For large ''n'', 3/4 of the positive integers less than ''n'' are not divisible by 4, 8/9 of these numbers are not divisible by 9, and so on. Because these ratios satisfy the [[multiplicative function|multiplicative property]] (this follows from [[Chinese remainder theorem]]), we obtain the approximation: :<math>\begin{align}Q(x) &\approx x\prod_{p\ \text{prime}} \left(1-\frac{1}{p^2}\right) = x\prod_{p\ \text{prime}} \frac{1}{(1-\frac{1}{p^2})^{-1}}\\ &=x\prod_{p\ \text{prime}} \frac{1}{1+\frac{1}{p^2}+\frac{1}{p^4}+\cdots} = \frac{x}{\sum_{k=1}^\infty \frac{1}{k^2}} = \frac{x}{\zeta(2)} = \frac{6x}{\pi^2}.\end{align}</math> This argument can be made rigorous for getting the estimate (using [[big O notation]]) :<math>Q(x) = \frac{6x}{\pi^2} + O\left(\sqrt{x}\right).</math> ''Sketch of a proof:'' the above characterization gives :<math>Q(x)=\sum_{n\leq x} \sum_{d^2\mid n} \mu(d)=\sum_{d\leq x} \mu(d)\sum_{n\leq x, d^2\mid n}1=\sum_{d\leq x} \mu(d)\left\lfloor\frac{x}{d^2}\right\rfloor;</math> observing that the last summand is zero for <math>d>\sqrt{x}</math>, it follows that {{NumBlk|:|<math>Q(x) = \sum_{d\leq\sqrt{x}} \mu(d)\left\lfloor\frac{x}{d^2}\right\rfloor</math>|{{EquationRef|1}}}} :<math>\begin{align} \phantom{Q(x)} &= \sum_{d\leq\sqrt{x}} \frac{x\mu(d)}{d^2}+O\left(\sum_{d\leq\sqrt{x}} 1\right) =x\sum_{d\leq\sqrt{x}} \frac{\mu(d)}{d^2}+O(\sqrt{x})\\ &=x\sum_{d} \frac{\mu(d)}{d^2}+O\left(x\sum_{d>\sqrt{x}}\frac{1}{d^2}+\sqrt{x}\right) =\frac{x}{\zeta(2)}+O(\sqrt{x}). \end{align}</math> By exploiting the largest known zero-free region of the Riemann zeta function [[Arnold Walfisz]] improved the approximation to<ref>{{cite book |last1=Walfisz |first1=A. |title=Weylsche Exponentialsummen in der neueren Zahlentheorie |date=1963 |publisher=[[VEB Deutscher Verlag der Wissenschaften]] |location=Berlin}}</ref> :<math>Q(x) = \frac{6x}{\pi^2} + O\left(x^{1/2}\exp\left(-c\frac{(\log x)^{3/5}}{(\log\log x)^{1/5}}\right)\right),</math> for some positive constant {{math|''c''}}. Under the [[Riemann hypothesis]], the error term can be reduced to<ref>Jia, Chao Hua. "The distribution of square-free numbers", ''Science in China Series A: Mathematics'' '''36''':2 (1993), pp. 154β169. Cited in Pappalardi 2003, [http://www.mat.uniroma3.it/users/pappa/papers/allahabad2003.pdf A Survey on ''k''-freeness]; also see Kaneenika Sinha, "[http://www.math.ualberta.ca/~kansinha/maxnrevfinal.pdf Average orders of certain arithmetical functions]", ''Journal of the Ramanujan Mathematical Society'' '''21''':3 (2006), pp. 267β277.</ref> :<math>Q(x) = \frac{x}{\zeta(2)} + O\left(x^{17/54+\varepsilon}\right) = \frac{6}{\pi^2}x + O\left(x^{17/54+\varepsilon}\right).</math> In 2015 the error term was further reduced (assuming also Riemann hypothesis) to<ref>{{cite journal |last1=Liu |first1=H.-Q. |title=On the distribution of squarefree numbers |journal=Journal of Number Theory |date=2016 |volume=159 |pages=202β222|doi=10.1016/j.jnt.2015.07.013 |doi-access=free }}</ref> :<math>Q(x) = \frac{6}{\pi^2}x + O\left(x^{11/35+\varepsilon}\right).</math> The asymptotic/[[natural density]] of square-free numbers is therefore :<math>\lim_{x\to\infty} \frac{Q(x)}{x} = \frac{6}{\pi^2}\approx 0.6079</math> Therefore over 3/5 of the integers are square-free. Likewise, if ''Q''(''x'',''n'') denotes the number of ''n''-free integers (e.g. 3-free integers being cube-free integers) between 1 and ''x'', one can show<ref>{{cite journal | first1 = E. H. | last1 = Linfoot | author-link1 = Edward Linfoot | first2 = C. J. A. | last2 = Evelyn | title = On a Problem in the Additive Theory of Numbers | journal = Mathematische Zeitschrift | date = 1929 | volume = 30 | pages = 443β448 | doi = 10.1007/BF01187781 | s2cid = 120604049 | url = https://gdz.sub.uni-goettingen.de/id/PPN266833020_0030?tify={%22pages%22:[437],%22view%22:%22info%22} }}</ref> :<math>Q(x,n) = \frac{x}{\sum_{k=1}^\infty \frac{1}{k^n}} + O\left(\sqrt[n]{x}\right) = \frac{x}{\zeta(n)} + O\left(\sqrt[n]{x}\right).</math> Since a multiple of 4 must have a square factor 4=2<sup>2</sup>, it cannot occur that four consecutive integers are all square-free. On the other hand, there exist infinitely many integers ''n'' for which 4''n'' +1, 4''n'' +2, 4''n'' +3 are all square-free. Otherwise, observing that 4''n'' and at least one of 4''n'' +1, 4''n'' +2, 4''n'' +3 among four could be non-square-free for sufficiently large ''n'', half of all positive integers minus finitely many must be non-square-free and therefore :<math>Q(x) \leq \frac{x}{2}+C</math> for some constant ''C'', contrary to the above asymptotic estimate for <math>Q(x)</math>. There exist sequences of consecutive non-square-free integers of arbitrary length. Indeed, for every tuple {{math|1=(''p''<sub>1</sub>, ..., ''p''<sub>''l''</sub>)}} of distinct primes, the [[Chinese remainder theorem]] guarantees the existence of an {{mvar|n}} that satisfies the simultaneous congruence :<math>n\equiv -i\pmod{p_i^2} \qquad (i=1, 2, \ldots, l).</math> Each {{math|1=''n'' + ''i''}} is then divisible by {{math|1=''p''{{su|b=''i''|p=2}}}}.<ref>{{cite book | last1= Parent | first1=D. P. |title=Exercises in Number Theory | publisher=[[Springer-Verlag]] New York | isbn=978-1-4757-5194-9 | url=https://www.springer.com/book/9780387960630 | doi=10.1007/978-1-4757-5194-9 | year=1984| series=Problem Books in Mathematics }}</ref> On the other hand, the above-mentioned estimate <math>Q(x) = 6x/\pi^2 + O\left(\sqrt{x}\right)</math> implies that, for some constant ''c'', there always exists a square-free integer between ''x'' and <math>x+c\sqrt{x}</math> for positive ''x''. Moreover, an elementary argument allows us to replace <math>x+c\sqrt{x}</math> by <math>x+cx^{1/5}\log x.</math><ref>{{cite journal | last1 = Filaseta | first1 = Michael | last2 = Trifonov | first2 = Ognian | doi = 10.1112/jlms/s2-45.2.215 | issue = 2 | journal = Journal of the London Mathematical Society | mr = 1171549 | pages = 215β221 | series = Second Series | title = On gaps between squarefree numbers. II | volume = 45 | year = 1992}}</ref> The [[abc conjecture|''abc'' conjecture]] would allow <math>x+x^{o(1)}</math>.<ref>{{cite journal |last1=Granville |first1=Andrew |author-link=Andrew Granville |year=1998 |title=ABC allows us to count squarefrees |journal=Int. Math. Res. Not. |volume=1998 |issue=19 |pages=991β1009 |doi=10.1155/S1073792898000592 |doi-access=<!-- not free-->}}</ref> === Computation of {{Math|''Q''(''x'')}} === The squarefree integers {{Math|≤ ''x''}} can be identified and counted in {{Math|[[big O notation|''Γ'']](''x'')}} time by using a modified [[Sieve of Eratosthenes]]. If only {{Math|''Q''(''x'')}} is desired, and not a list of the numbers that it counts, then ({{EquationNote|1}}) can be used to compute {{Math|''Q''(''x'')}} in {{Math|''Γ''({{radical|''x''}})}} time. The largest known value of {{Math|''Q''(''x'')}}, for {{Math|1=''x'' = 10<sup>36</sup>}}, was computed by Jakub Pawlewicz in 2011 using an algorithm that achieves {{Math|''Γ''(''x''<sup>2/5</sup>)}} time,<ref>{{cite arXiv |eprint=1107.4890 |last1=Pawlewicz |first1=Jakub |title=Counting Square-Free Numbers |date=2011 |class=math.NT }}</ref> and an algorithm taking {{Math|''Γ''(''x''<sup>1/3</sup>)}} time has been outlined but not implemented.{{r|HirschKesslerMendlovic2024|at=§5.5}} ===Table of ''Q''(''x''), {{Sfrac|6|Ο<sup>2</sup>}}''x'', and ''R''(''x'') === The table shows how <math> Q(x)</math> and <math>\frac{6}{\pi^2}x</math> (with the latter rounded to one decimal place) compare at powers of 10. <math> R(x) = Q(x) -\frac{6}{\pi^2}x </math> , also denoted as <math> \Delta(x) </math>. :{| class="wikitable" style="text-align: right" ! <math> x </math> ! <math> Q(x) </math> ! <math> \frac{6}{\pi^2}x</math> !<math> R(x)</math> |- | 10 | 7 | 6.1 | 0.9 |- | 10<sup>2</sup> | 61 | 60.8 | 0.2 |- | 10<sup>3</sup> | 608 | 607.9 | 0.1 |- | 10<sup>4</sup> | 6,083 | 6,079.3 | 3.7 |- | 10<sup>5</sup> | 60,794 | 60,792.7 | 1.3 |- | 10<sup>6</sup> | 607,926 | 607,927.1 | {{font color|red|β1.3}} |- | 10<sup>7</sup> | 6,079,291 | 6,079,271.0 | 20.0 |- | 10<sup>8</sup> | 60,792,694 | 60,792,710.2 | {{font color|red|β16.2}} |- | 10<sup>9</sup> | 607,927,124 | 607,927,101.9 | 22.1 |- | 10<sup>10</sup> | 6,079,270,942 | 6,079,271,018.5 | {{font color|red|β76.5}} |- | 10<sup>11</sup> | 60,792,710,280 | 60,792,710,185.4 | 94.6 |- | 10<sup>12</sup> | 607,927,102,274 | 607,927,101,854.0 | 420.0 |- | 10<sup>13</sup> | 6,079,271,018,294 | 6,079,271,018,540.3 | {{font color|red|β246.3}} |- | 10<sup>14</sup> | 60,792,710,185,947 | 60,792,710,185,402.7 | 544.3 |- | 10<sup>15</sup> | 607,927,101,854,103 | 607,927,101,854,027.0 | 76.0 |- |} <math> R(x) </math> changes its sign infinitely often as <math> x </math> tends to infinity.<ref>{{cite journal |last1=Minoru |first1=Tanaka |title=Experiments concerning the distribution of squarefree numbers |journal=Proceedings of the Japan Academy, Series A, Mathematical Sciences |year=1979 |volume=55 |issue=3 |doi=10.3792/pjaa.55.101 |s2cid=121862978 |url=https://projecteuclid.org/euclid.pja/1195517398|doi-access=free }}</ref> The absolute value of <math> R(x) </math> is astonishingly small compared with <math> x </math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)