Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Squeeze theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Second example === [[File:Limit_sin_x_x.svg|thumb|upright=1.5|Comparing areas:<br/> <math>\begin{array}{cccccc} & A(\triangle ADB) & \leq & A(\text{sector } ADB) & \leq & A(\triangle ADF) \\[4pt] \Rightarrow & \frac{1}{2} \cdot \sin x \cdot 1 & \leq & \frac{x}{2\pi} \cdot \pi & \leq & \frac{1}{2} \cdot \tan x \cdot 1 \\[4pt] \Rightarrow & \sin x & \leq & x & \leq & \frac{\sin x}{\cos x} \\[4pt] \Rightarrow & \frac{\cos x}{\sin x} & \leq & \frac{1}{x} & \leq & \frac{1}{\sin x} \\[4pt] \Rightarrow & \cos x & \leq & \frac{\sin x}{x} & \leq & 1 \end{array}</math>]] Probably the best-known examples of finding a limit by squeezing are the proofs of the equalities <math display="block"> \begin{align} & \lim_{x\to 0} \frac{\sin x}{x} =1, \\[10pt] & \lim_{x\to 0} \frac{1 - \cos x}{x} = 0. \end{align} </math> The first limit follows by means of the squeeze theorem from the fact that<ref>Selim G. Krejn, V.N. Uschakowa: ''Vorstufe zur höheren Mathematik''. Springer, 2013, {{ISBN|9783322986283}}, pp. [https://books.google.com/books?id=-yXMBgAAQBAJ&pg=PA80 80-81] (German). See also [[Sal Khan]]: [https://www.khanacademy.org/math/ap-calculus-ab/limits-from-equations-ab/squeeze-theorem-ab/v/proof-lim-sin-x-x ''Proof: limit of (sin x)/x at x=0''] (video, [[Khan Academy]])</ref> <math display="block"> \cos x \leq \frac{\sin x}{x} \leq 1 </math> for {{mvar|x}} close enough to 0. The correctness of which for positive {{mvar|x}} can be seen by simple geometric reasoning (see drawing) that can be extended to negative {{mvar|x}} as well. The second limit follows from the squeeze theorem and the fact that <math display="block"> 0 \leq \frac{1 - \cos x}{x} \leq x </math> for {{mvar|x}} close enough to 0. This can be derived by replacing {{math|sin ''x''}} in the earlier fact by <math display="inline"> \sqrt{1-\cos^2 x}</math> and squaring the resulting inequality. These two limits are used in proofs of the fact that the derivative of the sine function is the cosine function. That fact is relied on in other proofs of derivatives of trigonometric functions.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)