Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Step function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== * The sum and product of two step functions is again a step function. The product of a step function with a number is also a step function. As such, the step functions form an [[algebra over a field|algebra]] over the real numbers. * A step function takes only a finite number of values. If the intervals <math>A_i,</math> for <math>i=0, 1, \dots, n</math> in the above definition of the step function are disjoint and their union is the real line, then <math>f(x)=\alpha_i</math> for all <math>x\in A_i.</math> * The [[definite integral]] of a step function is a [[piecewise linear function]]. * The [[Lebesgue integral]] of a step function <math>\textstyle f = \sum_{i=0}^n \alpha_i \chi_{A_i}</math> is <math>\textstyle \int f\,dx = \sum_{i=0}^n \alpha_i \ell(A_i),</math> where <math>\ell(A)</math> is the length of the interval <math>A</math>, and it is assumed here that all intervals <math>A_i</math> have finite length. In fact, this equality (viewed as a definition) can be the first step in constructing the Lebesgue integral.<ref>{{Cite book | author=Weir, Alan J | title=Lebesgue integration and measure | date= 10 May 1973| publisher=Cambridge University Press, 1973 | isbn=0-521-09751-7 |chapter= 3}}</ref> * A [[discrete random variable]] is sometimes defined as a [[random variable]] whose [[cumulative distribution function]] is piecewise constant.<ref name=":0">{{Cite book|title=Introduction to Probability|last=Bertsekas|author-link=Dimitri Bertsekas|first=Dimitri P.|date=2002|publisher=Athena Scientific|others=[[John Tsitsiklis|Tsitsiklis, John N.]], Τσιτσικλής, Γιάννης Ν.|isbn=188652940X|location=Belmont, Mass.|oclc=51441829}}</ref> In this case, it is locally a step function (globally, it may have an infinite number of steps). Usually however, any random variable with only countably many possible values is called a discrete random variable, in this case their cumulative distribution function is not necessarily locally a step function, as infinitely many intervals can accumulate in a finite region.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)