Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stream function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Flux through the test surface ==== [[File:Stream function definition.svg|thumb|right|The volume [[flux]] through the test surface connecting the points <math>A</math> and <math>P.</math>]] The total [[flux|volumetric flux]] through the test surface is :<math> Q (x, y, t) = \int_0^b \int_0^L \mathbf{u} \cdot \hat\mathbf{n}\, \mathrm{d}s\, \mathrm{d}z </math> where <math>s</math> is an arc-length parameter defined on the curve <math>AP</math>, with <math>s = 0</math> at the point <math>A</math> and <math>s = L</math> at the point <math>P</math>. Here <math>\hat\mathbf{n}</math> is the unit vector perpendicular to the test surface, i.e., :<math> \hat\mathbf{n}\, \mathrm{d}s = -R\, \mathrm{d} \mathbf{r} = \begin{bmatrix} \mathrm{d}y \\ - \mathrm{d}x \\ 0 \end{bmatrix} </math> where <math>R</math> is the <math>3 \times 3</math> [[rotation matrix]] corresponding to a <math>90^\circ</math> anticlockwise rotation about the positive <math>z</math> axis: :<math> R = R_z(90^\circ) = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}. </math> The integrand in the expression for <math>Q</math> is independent of <math>z</math>, so the outer integral can be evaluated to yield :<math> Q (x, y, t) = b\, \int_A^P \left( u\, \mathrm{d} y - v\, \mathrm{d} x \right) </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)