Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Subgroup
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Example: Subgroups of S<sub>4</sub>{{anchor|Subgroups of S4}}== {{math|S<sub>4</sub>}} is the [[symmetric group]] whose elements correspond to the [[permutation]]s of 4 elements.<br> Below are all its subgroups, ordered by cardinality.<br> Each group <small>(except those of cardinality 1 and 2)</small> is represented by its [[Cayley table]]. ===24 elements=== Like each group, {{math|S<sub>4</sub>}} is a subgroup of itself. {| style="width:100%" | style="vertical-align:top;"|[[File:Symmetric group 4; Cayley table; numbers.svg|thumb|left|595px|Symmetric group {{math|S<sub>4</sub>}}]] | style="vertical-align:top;"| {{multiple image | align = right | image1 = Symmetric group S4; lattice of subgroups Hasse diagram; all 30 subgroups.svg | width1 = 250 | caption1 = All 30 subgroups | image2 = Symmetric group S4; lattice of subgroups Hasse diagram; 11 different cycle graphs.svg | width2 = 185 | caption2 = Simplified | footer = [[Hasse diagram]]s of the [[lattice of subgroups]] of {{math|S<sub>4</sub>}} }} |} ===12 elements=== The [[alternating group]] contains only the [[w:parity of a permutation|even permutations]].<br> It is one of the two nontrivial proper [[normal subgroup]]s of {{math|S<sub>4</sub>}}. <small>(The other one is its Klein subgroup.)</small> [[File:Alternating group 4; Cayley table; numbers.svg|thumb|left|323px|Alternating group {{math|A<sub>4</sub>}}<br><br>Subgroups:<br>[[File:Klein four-group; Cayley table; subgroup of S4 (elements 0,7,16,23).svg|70px]]<br>[[File:Cyclic group 3; Cayley table; subgroup of S4 (elements 0,3,4).svg|60px]][[File:Cyclic group 3; Cayley table; subgroup of S4 (elements 0,11,19).svg|60px]] [[File:Cyclic group 3; Cayley table; subgroup of S4 (elements 0,15,20).svg|60px]] [[File:Cyclic group 3; Cayley table; subgroup of S4 (elements 0,8,12).svg|60px]]]] {{clear}} ===8 elements=== {| |- | <!-- LEFT -->[[File:Dihedral group of order 8; Cayley table (element orders 1,2,2,2,2,4,4,2); subgroup of S4.svg|thumb|233px|[[w:Dihedral group|Dihedral group]] [[Dihedral group of order 8|of order 8]]<br><br>Subgroups:<br>[[File:Klein four-group; Cayley table; subgroup of S4 (elements 0,1,6,7).svg|70px]][[File:Klein four-group; Cayley table; subgroup of S4 (elements 0,7,16,23).svg|70px]][[File:Cyclic group 4; Cayley table (element orders 1,2,4,4); subgroup of S4.svg|70px]]]] || || <!-- CENTRAL -->[[File:Dihedral group of order 8; Cayley table (element orders 1,2,2,4,2,2,4,2); subgroup of S4.svg|thumb|233px|Dihedral group of order 8<br><br>Subgroups:<br>[[File:Klein four-group; Cayley table; subgroup of S4 (elements 0,5,14,16).svg|70px]][[File:Klein four-group; Cayley table; subgroup of S4 (elements 0,7,16,23).svg|70px]][[File:Cyclic group 4; Cayley table (element orders 1,4,2,4); subgroup of S4.svg|70px]]]] || || <!-- RIGHT -->[[File:Dihedral group of order 8; Cayley table (element orders 1,2,2,4,4,2,2,2); subgroup of S4.svg|thumb|233px|Dihedral group of order 8<br><br>Subgroups:<br>[[File:Klein four-group; Cayley table; subgroup of S4 (elements 0,2,21,23).svg|70px]][[File:Klein four-group; Cayley table; subgroup of S4 (elements 0,7,16,23).svg|70px]][[File:Cyclic group 4; Cayley table (element orders 1,4,4,2); subgroup of S4.svg|70px]]]] |} {{clear}} ===6 elements=== {| |- | <!-- 1 -->[[File:Symmetric group 3; Cayley table; subgroup of S4 (elements 0,1,2,3,4,5).svg|thumb|187px|[[w:Symmetric group|Symmetric group]] {{math|[[w:Dihedral group of order 6|S<sub>3</sub>]]}}<br><br>Subgroup:[[File:Cyclic group 3; Cayley table; subgroup of S4 (elements 0,3,4).svg|60px]]]] || <!-- 2 -->[[File:Symmetric group 3; Cayley table; subgroup of S4 (elements 0,5,6,11,19,21).svg|thumb|187px|Symmetric group {{math|S<sub>3</sub>}}<br><br>Subgroup:[[File:Cyclic group 3; Cayley table; subgroup of S4 (elements 0,11,19).svg|60px]]]] || <!-- 3 -->[[File:Symmetric group 3; Cayley table; subgroup of S4 (elements 0,1,14,15,20,21).svg|thumb|187px|Symmetric group {{math|S<sub>3</sub>}}<br><br>Subgroup:[[File:Cyclic group 3; Cayley table; subgroup of S4 (elements 0,15,20).svg|60px]]]] || <!-- 4 -->[[File:Symmetric group 3; Cayley table; subgroup of S4 (elements 0,2,6,8,12,14).svg|thumb|187px|Symmetric group {{math|S<sub>3</sub>}}<br><br>Subgroup:[[File:Cyclic group 3; Cayley table; subgroup of S4 (elements 0,8,12).svg|60px]]]] |} {{clear}} ===4 elements=== {| |- style="vertical-align: top;" | [[File:Klein four-group; Cayley table; subgroup of S4 (elements 0,1,6,7).svg|thumb|142px|[[w:Klein four-group|Klein four-group]]]] || [[File:Klein four-group; Cayley table; subgroup of S4 (elements 0,5,14,16).svg|thumb|142px|Klein four-group]] || [[File:Klein four-group; Cayley table; subgroup of S4 (elements 0,2,21,23).svg|thumb|142px|Klein four-group]] || [[File:Klein four-group; Cayley table; subgroup of S4 (elements 0,7,16,23).svg|thumb|142px|Klein four-group<br><small>([[normal subgroup]])</small>]] |} {{clear}} {| |- | [[File:Cyclic group 4; Cayley table (element orders 1,2,4,4); subgroup of S4.svg|thumb|142px|[[w:Cyclic group|Cyclic group]] {{math|Z<sub>4</sub>}}]] || [[File:Cyclic group 4; Cayley table (element orders 1,4,2,4); subgroup of S4.svg|thumb|142px|Cyclic group {{math|Z<sub>4</sub>}}]] || [[File:Cyclic group 4; Cayley table (element orders 1,4,4,2); subgroup of S4.svg|thumb|142px|Cyclic group {{math|Z<sub>4</sub>}}]] |} {{clear}} ===3 elements=== {| |- | [[File:Cyclic group 3; Cayley table; subgroup of S4 (elements 0,3,4).svg|thumb|120px|[[w:Cyclic group|Cyclic group]] {{math|Z<sub>3</sub>}}]] || [[File:Cyclic group 3; Cayley table; subgroup of S4 (elements 0,11,19).svg|thumb|120px|Cyclic group {{math|Z<sub>3</sub>}}]] || [[File:Cyclic group 3; Cayley table; subgroup of S4 (elements 0,15,20).svg|thumb|120px|Cyclic group {{math|Z<sub>3</sub>}}]] || [[File:Cyclic group 3; Cayley table; subgroup of S4 (elements 0,8,12).svg|thumb|120px|Cyclic group {{math|Z<sub>3</sub>}}]] |} {{clear}} ===2 elements=== Each permutation {{mvar|p}} of order 2 generates a subgroup {{math|{1, ''p''}}}. These are the permutations that have only 2-cycles:<br> * There are the 6 [[Cyclic permutation#Transpositions|transpositions]] with one 2-cycle. <small>(green background)</small> * And 3 permutations with two 2-cycles. <small>(white background, bold numbers)</small> ===1 element=== The [[trivial group|trivial subgroup]] is the unique subgroup of order 1.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)