Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Sum-addressed decoder
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Gate-level implementation== <div style="float:right; margin: 0 0 1em 1em; background:#ddddff;"> R<sub>13</sub> ... R<sub>6</sub> R<sub>5</sub> R<sub>4</sub> R<sub>3</sub> O<sub>13</sub> ... O<sub>6</sub> O<sub>5</sub> O<sub>4</sub> O<sub>3</sub> L<sub>13</sub> ... L<sub>6</sub> L<sub>5</sub> L<sub>4</sub> L<sub>3</sub> -------------------------- S<sub>13</sub> ... S<sub>6</sub> S<sub>5</sub> S<sub>4</sub> S<sub>3</sub> C<sub>14</sub> C<sub>13</sub> ... C<sub>6</sub> C<sub>5</sub> C<sub>4</sub> </div> Before collapsing redundancy between rows, review: Each row of each decoder for each of two banks implements a set of full adders which reduce the three numbers to be added (R[13:3], O[13:3], and L) to two numbers (S[14:4] and C[13:3]). The LSB (==S[3]) is discarded. Carry out (==C[14]) is also discarded. The row matches if S[13:4] == ~C[13:4], which is &( xor(S[13:4], C[13:4])). It is possible to partially specialize the full adders to 2-input AND, OR, XOR, and XNOR because the L input is constant. The resulting expressions are common to all lines of the decoder and can be collected at the bottom. S<sub>0;i </sub> = S(R<sub>i</sub>, O<sub>i</sub>, 0) = R<sub>i</sub> xor O<sub>i</sub> S<sub>1;i </sub> = S(R<sub>i</sub>, O<sub>i</sub>, 1) = R<sub>i</sub> xnor O<sub>i</sub> C<sub>0;i+1</sub> = C(R<sub>i</sub>, O<sub>i</sub>, 0) = R<sub>i</sub> and O<sub>i</sub> C<sub>1;i+1</sub> = C(R<sub>i</sub>, O<sub>i</sub>, 1) = R<sub>i</sub> or O<sub>i</sub>. At each digit position, there are only two possible S<sub>i</sub>, two possible C<sub>i</sub>, and four possible XORs between them: L<sub>i</sub>=0 and L<sub>i-1</sub>=0: X<sub>0;0;i</sub> = S<sub>0;i</sub> xor C<sub>0;i</sub> = R<sub>i</sub> xor O<sub>i</sub> xor (R<sub>i-1</sub> and O<sub>i-1</sub>) L<sub>i</sub>=0 and L<sub>i-1</sub>=1: X<sub>0;1;i</sub> = S<sub>0;i</sub> xor C<sub>1;i</sub> = R<sub>i</sub> xor O<sub>i</sub> xor (R<sub>i-1</sub> or O<sub>i-1</sub>) L<sub>i</sub>=1 and L<sub>i-1</sub>=0: X<sub>1;0;i</sub> = S<sub>1;i</sub> xor C<sub>0;i</sub> = R<sub>i</sub> xnor O<sub>i</sub> xor (R<sub>i-1</sub> and O<sub>i-1</sub>) = !X<sub>0;0;i</sub> L<sub>i</sub>=1 and L<sub>i-1</sub>=1: X<sub>1;1;i</sub> = S<sub>1;i</sub> xor C<sub>1;i</sub> = R<sub>i</sub> xnor O<sub>i</sub> xor (R<sub>i-1</sub> or O<sub>i-1</sub>) = !X<sub>0;1;i</sub> One possible decoder for the example might calculate these four expressions for each of the bits 4..13, and drive all 40 wires up the decoder. Each line of the decoder would select one of the four wires for each bit, and consist of a 10-input AND.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)