Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Tensor product
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Linearly disjoint === Like the universal property above, the following characterization may also be used to determine whether or not a given vector space and given bilinear map form a tensor product.{{sfn|Trèves|2006|pp=403-404}} {{math theorem|math_statement= Let {{tmath|1= X, Y }}, and <math>Z</math> be complex vector spaces and let <math>T : X \times Y \to Z</math> be a bilinear map. Then <math>(Z, T)</math> is a tensor product of <math>X</math> and <math>Y</math> if and only if{{sfn|Trèves|2006|pp=403-404}} the image of <math>T</math> spans all of <math>Z</math> (that is, {{tmath|1= \operatorname{span} \; T(X \times Y) = Z }}), and also <math>X</math> and <math>Y</math> are {{em|<math>T</math>-linearly disjoint}}, which by definition means that for all positive integers <math>n</math> and all elements <math>x_1, \ldots, x_n \in X</math> and <math>y_1, \ldots, y_n \in Y</math> such that {{tmath|1= \sum_{i=1}^n T\left(x_i, y_i\right) = 0 }}, # if all <math>x_1, \ldots, x_n</math> are [[linearly independent]] then all <math>y_i</math> are {{tmath|1= 0 }}, and # if all <math>y_1, \ldots, y_n</math> are linearly independent then all <math>x_i</math> are {{tmath|1= 0 }}. Equivalently, <math>X</math> and <math>Y</math> are <math>T</math>-linearly disjoint if and only if for all linearly independent sequences <math>x_1, \ldots, x_m</math> in <math>X</math> and all linearly independent sequences <math>y_1, \ldots, y_n</math> in {{tmath|1= Y }}, the vectors <math>\left\{T\left(x_i, y_j\right) : 1 \leq i \leq m, 1 \leq j \leq n\right\}</math> are linearly independent. }} For example, it follows immediately that if {{tmath|1=X=\C^m}} and {{tmath|1=Y=\C^n}}, where <math>m</math> and <math>n</math> are positive integers, then one may set <math>Z = \Complex^{mn}</math> and define the bilinear map as <math display=block>\begin{align} T : \Complex^m \times \Complex^n &\to \Complex^{mn}\\ (x, y) = ((x_1, \ldots, x_m), (y_1, \ldots, y_n)) &\mapsto (x_i y_j)_{\stackrel{i=1,\ldots,m}{j=1,\ldots,n}}\end{align}</math> to form the tensor product of <math>X </math> and {{tmath|1= Y }}.{{sfn|Trèves|2006|pp=407}} Often, this map <math>T</math> is denoted by <math>\,\otimes\,</math> so that <math>x \otimes y = T(x, y).</math> As another example, suppose that <math>\Complex^S</math> is the vector space of all complex-valued functions on a set <math>S</math> with addition and scalar multiplication defined pointwise (meaning that <math>f + g</math> is the map <math>s \mapsto f(s) + g(s)</math> and <math>c f</math> is the map {{tmath|1= s \mapsto c f(s) }}). Let <math>S</math> and <math>T</math> be any sets and for any <math>f \in \Complex^S</math> and {{tmath|1= g \in \Complex^T }}, let <math>f \otimes g \in \Complex^{S \times T}</math> denote the function defined by {{tmath|1= (s, t) \mapsto f(s) g(t) }}. If <math>X \subseteq \Complex^S</math> and <math>Y \subseteq \Complex^T</math> are vector subspaces then the vector subspace <math>Z := \operatorname{span} \left\{f \otimes g : f \in X, g \in Y\right\}</math> of <math>\Complex^{S \times T}</math> together with the bilinear map: <math display=block>\begin{alignat}{4} \;&& X \times Y &&\;\to \;& Z \\[0.3ex] && (f, g) &&\;\mapsto\;& f \otimes g \\ \end{alignat}</math> form a tensor product of <math>X</math> and {{tmath|1= Y }}.{{sfn|Trèves|2006|pp=407}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)