Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Theory of everything
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Late 20th century and the nuclear interactions=== In the 20th century, the search for a unifying theory was interrupted by the discovery of the [[strong force|strong]] and [[weak force|weak]] nuclear forces, which differ both from gravity and from electromagnetism. A further hurdle was the acceptance that in a theory of everything, quantum mechanics had to be incorporated from the outset, rather than emerging as a consequence of a deterministic unified theory, as Einstein had hoped. Gravity and electromagnetism are able to coexist as entries in a list of classical forces, but for many years it seemed that gravity could not be incorporated into the quantum framework, let alone unified with the other fundamental forces. For this reason, work on unification, for much of the 20th century, focused on understanding the three forces described by quantum mechanics: electromagnetism and the weak and strong forces. The first two were [[electroweak interaction|combined]] in 1967β1968 by [[Sheldon Glashow]], [[Steven Weinberg]], and [[Abdus Salam]] into the electroweak force.<ref>Weinberg (1993), Ch. 5</ref> Electroweak unification is a [[broken symmetry]]: the electromagnetic and weak forces appear distinct at low energies because the particles carrying the weak force, the [[W and Z bosons]], have non-zero masses ({{val|80.4|u=GeV/c2}} and {{val|91.2|u=GeV/c2}}, respectively), whereas the [[photon]], which carries the electromagnetic force, is massless. At higher energies W bosons and Z bosons can be [[matter creation|created]] easily and the unified nature of the force becomes apparent. While the strong and electroweak forces coexist under the [[Standard Model]] of particle physics, they remain distinct. Thus, the pursuit of a theory of everything remained unsuccessful: neither a unification of the strong and electroweak forces β which Laplace would have called 'contact forces' β nor a unification of these forces with gravitation had been achieved.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)