Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Theta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Product representations== The [[Jacobi triple product]] (a special case of the [[Macdonald identities]]) tells us that for complex numbers {{mvar|w}} and {{mvar|q}} with {{math|{{abs|''q''}} < 1}} and {{math|''w'' โ 0}} we have :<math>\prod_{m=1}^\infty \left( 1 - q^{2m}\right) \left( 1 + w^2 q^{2m-1}\right) \left( 1 + w^{-2}q^{2m-1}\right) = \sum_{n=-\infty}^\infty w^{2n}q^{n^2}. </math> It can be proven by elementary means, as for instance in Hardy and Wright's ''[[An Introduction to the Theory of Numbers]]''. If we express the theta function in terms of the nome {{math|''q'' {{=}} ''e''<sup>''ฯiฯ''</sup>}} (noting some authors instead set {{math|''q'' {{=}} ''e''<sup>2''ฯiฯ''</sup>}}) and take {{math|''w'' {{=}} ''e''<sup>''ฯiz''</sup>}} then :<math>\vartheta(z; \tau) = \sum_{n=-\infty}^\infty \exp(\pi i \tau n^2) \exp(2\pi i z n) = \sum_{n=-\infty}^\infty w^{2n}q^{n^2}. </math> We therefore obtain a product formula for the theta function in the form :<math>\vartheta(z; \tau) = \prod_{m=1}^\infty \big( 1 - \exp(2m \pi i \tau)\big) \Big( 1 + \exp\big((2m-1) \pi i \tau + 2 \pi i z\big)\Big) \Big( 1 + \exp\big((2m-1) \pi i \tau - 2 \pi i z\big)\Big). </math> In terms of {{mvar|w}} and {{mvar|q}}: :<math>\begin{align} \vartheta(z; \tau) &= \prod_{m=1}^\infty \left( 1 - q^{2m}\right) \left( 1 + q^{2m-1}w^2\right) \left( 1 + \frac{q^{2m-1}}{w^2}\right) \\ &= \left(q^2;q^2\right)_\infty\,\left(-w^2q;q^2\right)_\infty\,\left(-\frac{q}{w^2};q^2\right)_\infty \\ &= \left(q^2;q^2\right)_\infty\,\theta\left(-w^2q;q^2\right) \end{align}</math> where {{math|( ; )<sub>โ</sub>}} is the [[q-Pochhammer symbol|{{mvar|q}}-Pochhammer symbol]] and {{math|''ฮธ''( ; )}} is the [[q-theta function|{{mvar|q}}-theta function]]. Expanding terms out, the Jacobi triple product can also be written :<math>\prod_{m=1}^\infty \left( 1 - q^{2m}\right) \Big( 1 + \left(w^2+w^{-2}\right)q^{2m-1}+q^{4m-2}\Big),</math> which we may also write as :<math>\vartheta(z\mid q) = \prod_{m=1}^\infty \left( 1 - q^{2m}\right) \left( 1 + 2 \cos(2 \pi z)q^{2m-1}+q^{4m-2}\right).</math> This form is valid in general but clearly is of particular interest when {{mvar|z}} is real. Similar product formulas for the auxiliary theta functions are :<math>\begin{align} \vartheta_{01}(z\mid q) &= \prod_{m=1}^\infty \left( 1 - q^{2m}\right) \left( 1 - 2 \cos(2 \pi z)q^{2m-1}+q^{4m-2}\right),\\[3pt] \vartheta_{10}(z\mid q) &= 2 q^\frac14\cos(\pi z)\prod_{m=1}^\infty \left( 1 - q^{2m}\right) \left( 1 + 2 \cos(2 \pi z)q^{2m}+q^{4m}\right),\\[3pt] \vartheta_{11}(z\mid q) &= -2 q^\frac14\sin(\pi z)\prod_{m=1}^\infty \left( 1 - q^{2m}\right)\left( 1 - 2 \cos(2 \pi z)q^{2m}+q^{4m}\right). \end{align}</math> In particular, <math display="block">\lim_{q\to 0}\frac{\vartheta_{10}(z\mid q)}{2 q^{\frac14}} = \cos(\pi z),\quad \lim_{q\to 0}\frac{-\vartheta_{11}(z\mid q)}{2 q^{-\frac14}} = \sin(\pi z)</math>so we may interpret them as one-parameter deformations of the periodic functions <math>\sin, \cos</math>, again validating the interpretation of the theta function as the most general 2 quasi-period function.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)