Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Thiele/Small parameters
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Other parameters== *<math>Z_{\rm max}</math> – The impedance of the driver at <math>f_{\rm s}</math>, used when measuring <math>Q_{\rm es}</math> and <math>Q_{\rm ms}</math>. :<math>Z_{\rm max} = R_e\left(1+\frac{Q_{\rm ms}}{Q_{\rm es}}\right)</math> *<math>EBP</math> – The efficiency bandwidth product, a rough indicator measure. A common rule of thumb indicates that for <math>EBP>100</math>, a driver is perhaps best used in a vented enclosure, while <math>EBP<50</math> indicates a sealed enclosure. For <math>50<EBP<100</math>, either enclosure may be used effectively. :<math>EBP = \frac{f_{\rm s}}{Q_{\rm es}}</math> *<math>Z_{\rm nom}</math> – The nominal impedance of the loudspeaker, typically 4, 8 or 16 ohms. *<math>\eta_0</math> – The reference or "power available" efficiency of the driver, in percent. :<math>\eta_0 = \left(\frac{\rho \cdot B^2 \cdot l^2 \cdot S_{\rm d}^2}{2 \cdot \pi \cdot c \cdot M_{\rm ms}^2 \cdot R_{\rm e}}\right)\times100\%</math><ref>{{cite book |title=Acoustics |last1=Beranek |first1=Leo L. |last2=Mellow |first2=Tim J. |date=2012 |publisher=Academic Press |isbn=9780123914217 |oclc=811400350}}</ref> :The expression <math>\rho/2\pi c</math> can be replaced by the value 5.445×10<sup>−4</sup> m<sup>2</sup>·s/kg for dry air at 25 °C. For 25 °C air with 50% relative humidity the expression evaluates to 5.365×10<sup>−4</sup> m<sup>2</sup>·s/kg. :A version that is more easily calculated with typical published parameters is: :<math>\eta_0 = \left(\frac{4 \cdot \pi^2 \cdot f_{\rm s}^3 \cdot V_{\rm as}}{c^3 \cdot Q_{\rm es}}\right)\times100\%</math> :The expression <math>4\pi^2/c^3</math> can be replaced by the value 9.523×10<sup>−7</sup> s<sup>3</sup>/m<sup>3</sup> for dry air at 25 °C. For 25 °C air with 50% relative humidity the expression evaluates to 9.438×10<sup>−7</sup> s<sup>3</sup>/m<sup>3</sup>. *From the efficiency, we may calculate sensitivity, which is the sound pressure level a speaker produces for a given input: :A speaker with an efficiency of 100% (1.0) would output a watt for every watt of input. Considering the driver as a point source in an infinite baffle, at one metre this would be distributed over a hemisphere with area <math>2\pi</math> m<sup>2</sup> for an intensity of <math>1/(2\pi)</math> = 0.159155 W/m<sup>2</sup>. The auditory threshold is taken to be 10<sup>–12</sup> W/m<sup>2</sup> (which corresponds to a pressure level of 20×10<sup>−6</sup> Pa). Therefore a speaker with 100% efficiency would produce an SPL equal to 10log(0.159155/10<sup>–12</sup>), which is 112.02 dB. :The SPL at 1 metre for an input of 1 watt is then: dB<sub>(1 watt)</sub> = 112.02 + 10·log(<math>\eta_0</math>) :The SPL at 1 metre for an input of 2.83 volts is then: dB<sub>(2.83 V)</sub> = dB<sub>(1 watt)</sub> + 10·log(8/<math>R_e</math>) = 112.02 + 10·log(<math>\eta_0</math>) + 10·log(8/<math>R_e</math>)
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)