Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Time–frequency analysis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== TF analysis and random processes<ref>{{Cite book |last=Ding |first=Jian-Jiun |title=Time frequency analysis and wavelet transform class notes |publisher=Graduate Institute of Communication Engineering, National Taiwan University (NTU) |year=2022 |location=Taipei, Taiwan}}</ref> == For a random process x(t), we cannot find the explicit value of x(t). The value of x(t) is expressed as a probability function. === General random processes === * Auto-covariance function (ACF) <math>R_x(t,\tau)</math> :<math>R_x(t,\tau) = E[x(t+\tau/2)x^*(t-\tau/2)]</math> :In usual, we suppose that <math>E[x(t)] = 0 </math> for any t, :<math>E[x(t+\tau/2)x^*(t-\tau/2)]</math> :<math>=\iint x(t+\tau/2,\xi_1)x^*(t-\tau/2,\xi_2)P(\xi_1,\xi_2)d\xi_1d\xi_2</math> :(alternative definition of the auto-covariance function) :<math>\overset{\land}{R_x}(t,\tau)=E[x(t)x(t+\tau)]</math> * Power spectral density (PSD) <math>S_x(t,f)</math> :<math>S_x(t,f) = \int_{-\infty}^{\infty} R_x(t,\tau)e^{-j2\pi f\tau}d\tau</math> * Relation between the [[Wigner distribution function|WDF (Wigner Distribution Function)]] and the PSD :<math>E[W_x(t,f)] = \int_{-\infty}^{\infty} E[x(t+\tau/2)x^*(t-\tau/2)]\cdot e^{-j2\pi f\tau}\cdot d\tau</math> :::::<math>= \int_{-\infty}^{\infty} R_x(t,\tau)\cdot e^{-j2\pi f\tau}\cdot d\tau</math><math>= S_x(t,f)</math> * Relation between the [[ambiguity function]] and the ACF :<math>E[A_X(\eta,\tau)] = \int_{-\infty}^{\infty} E[x(t+\tau/2)x^*(t-\tau/2)]e^{-j2\pi t\eta}dt</math> :::::<math>= \int_{-\infty}^{\infty} R_x(t,\tau)e^{-j2\pi t\eta}dt</math> === Stationary random processes === * [[Stationary process|Stationary random process]]: the statistical properties do not change with t. Its auto-covariance function: <math>R_x(t_1,\tau) = R_x(t_2,\tau) = R_x(\tau)</math> for any <math>t</math>, Therefore, <math>R_x(\tau) = E[x(\tau/2)x^*(-\tau/2)]</math> <math>=\iint x(\tau/2,\xi_1)x^*(-\tau/2,\xi_2)P(\xi_1,\xi_2)d\xi_1d\xi_2</math>PSD, <math>S_x(f) = \int_{-\infty}^{\infty} R_x(\tau)e^{-j2\pi f\tau}d\tau</math> White noise: <math>S_x(f) = \sigma</math> , where <math>\sigma</math> is some constant.[[File:Stationary random process's WDF and AF.jpg|right|frameless|440x440px]] * When x(t) is stationary, <math>E[W_x(t,f)] = S_x(f)</math> , (invariant with <math>t</math>) <math>E[A_x(\eta,\tau)] = \int_{-\infty}^{\infty} R_x(\tau)\cdot e^{-j2\pi t\eta}\cdot dt</math> <math>= R_x(\tau)\int_{-\infty}^{\infty} e^{-j2\pi t\eta}\cdot dt</math><math>= R_x(\tau)\delta(\eta)</math> , (nonzero only when <math>\eta = 0</math>) === Additive white noise === * For additive white noise (AWN), :<math>E[W_g(t,f)] = \sigma</math> :<math>E[A_x(\eta,\tau)] = \sigma\delta(\tau)\delta(\eta)</math> * Filter Design for a signal in additive white noise [[File:Filter design for white noise.jpg|left|thumb|440x440px]] <math>E_x</math>: energy of the signal <math>A</math> : area of the time frequency distribution of the signal The PSD of the white noise is <math>S_n(f) = \sigma</math> <math>SNR \approx 10\log_{10}\frac{E_x}{\iint\limits_{(t,f)\in\text{signal part}} S_x(t,f)dtdf}</math> <math>SNR \approx 10\log_{10}\frac{E_x}{\sigma\Alpha}</math> === Non-stationary random processes === * If <math>E[W_x(t,f)]</math> varies with <math>t</math> and <math>E[A_x(\eta,\tau)]</math> is nonzero when <math>\eta = 0</math>, then <math>x(t)</math> is a non-stationary random process. * If *# <math>h(t) = x_1(t)+x_2(t)+x_3(t)+......+x_k(t)</math> *# <math>x_n(t)</math>'s have zero mean for all <math>t</math>'s *# <math>x_n(t)</math>'s are mutually independent for all <math>t</math>'s and <math>\tau</math>'s :then: ::<math>E[x_m(t+\tau/2)x_n^*(t-\tau/2)] = E[x_m(t+\tau/2)]E[x_n^*(t-\tau/2)] = 0</math> * if <math>m \neq n</math>, then ::<math>E[W_h(t,f)] = \sum_{n=1}^k E[W_{x_n}(t,f)]</math> ::<math>E[A_h(\eta,\tau)] = \sum_{n=1}^k E[A_{x_n}(\eta,\tau)]</math> === Short-time Fourier transform === * Random process for [[Short-time Fourier transform|STFT (Short Time Fourier Transform)]] <math>E[x(t)]\neq 0</math> should be satisfied. Otherwise, <math>E[X(t,f)] = E[\int_{t-B}^{t+B} x(\tau)w(t-\tau)e^{-j2\pi f\tau}d\tau]</math> <math>=\int_{t-B}^{t+B} E[x(\tau)]w(t-\tau)e^{-j2\pi f\tau}d\tau</math>for zero-mean random process, <math>E[X(t,f)] = 0</math> * Decompose by the AF and the FRFT. Any non-stationary random process can be expressed as a summation of the fractional Fourier transform (or chirp multiplication) of stationary random process.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)